Supporting Information for

Synergistic effect of polymer encapsulated silver nanoparticles doped WS$_2$ sheets for plasmon enhanced 2D/3D heterojunction photodetectors

R. K. Chowdhurya, T. K. Sinhaa, A. K. Katiyara, S. K. Raya,b

*Email: Physkr@phy.iitkgp.ernet.in

Fig. S1 Schematic illustration of intercalation process of bulk WS$_2$ using PVP encapsulated Ag0 nanoparticles (AGP) to obtain few layers WS$_2$-AGP (AGPW) nanocomposite.
Fig. S2 Selected area electron diffraction pattern of AGPW showing the presence of polycrystalline Ag°.

Fig. S3 High resolution TEM image showing the volume fraction of the PVP encapsulation as ~20 % compared to ~ 80 % for Ag (PVP thickness ~ 2 nm, which is thin enough for tunneling of charge carriers for biased devices).
Fig. S4 (a), (b) and (c) Optical photographs of AGP (synthesized at room temperature, 50° C and 100° C), freshly prepared AGPW and AGPW dispersions after one week of the synthesis, respectively.

Fig. S5 Typical time resolved PL spectrum of AGP (~ 4-6 nm, prepared at room temperature) intercalated WS₂ (AGPW) layer.
Fig. S6 (a) Optical switching response under different reverse bias condition. Inset shows an enlarged view of the switching characteristics for zero bias. (b) Variation in photocurrent under the increasing reverse bias, which saturates at -5 V.

Fig. S7 External quantum efficiency (EQE) of plasmonic n-AGPW/p-Si heterojunction device at 0 V.
Fig. S8 (a) UV-Visible spectrum of WS$_2$-Ag nanoparticles without PVP capping, dominated by the Ag$_2$S absorption peaks. (b) Typical current-voltage (I-V) characteristics of Ag-WS$_2$ without PVP capping/p-Si heterojunction device.