Supplementary information

Insight into the chemical adsorption properties of CO molecules on supported Au or Cu and hybridized Au-CuO nanoparticles

Jingjie Luo,1 Yuefeng Liu,2* Yiming Niu,1 Qian Jiang,2 Rui Huang,1
Bingsen Zhang,1* Dangsheng Su1,2*

1 Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research,
Chinese Academy of Science, 72 Wenhua Rd., Shenyang 110016, China.

2 Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, 457 Zhongshan Rd., Dalian 116023, China.
Supplementary information

Figure S1. Photos displaying the distinctive colors of samples before and after calcination process.

Figure S2. TEM images of CuO/AO (a), Au/AO (b), and size distribution of gold nanoparticles in Au/AO (c).
Figure S3. XRD patterns of typical samples (left) and zoomed spectra in the range of 33-40° (right).

Figure S4. CO-TPD profiles of pure Al₂O₃ powder. The deposition compounds are monitored with m/z intensity of 28 and 44 for CO and CO₂, respectively, at a heating rate of 5 °C min⁻¹ in helium.
Figure S5. H\textsubscript{2}-TPR profiles of the Au/AO, CuO/AO and Au-CuO/AO catalysts. The reduction compounds are monitored by mass spectroscopy with m/z intensity of 18 for H\textsubscript{2}O, at a heating rate of 10 °C·min-1 in 5% H\textsubscript{2} balanced with helium.

Figure S6. STEM image and size distribution of Au/AO\textsubscript{-3.2} with smaller AuNPs.
Figure S7. CO conversion over three catalysts in CO oxidation as a function of reaction temperature. Conditions: Gas flow rate of 20 ml·min⁻¹, 50 mg catalyst, 1 vol % CO in air. The error bars were marked based on three continuous reaction cycles from room temperature to 300 °C.

Figure S8. FT-IR spectra of different samples as CO adsorption for 30 min in the range of 2250-1980 cm⁻¹.
Figure S9. Operando DRIFT spectra of CuO/AO (a-b) and Au/AO (c-d) samples as CO adsorption for 30 min in the range of 2250-1980 cm$^{-1}$.
Figure S10. Operando DRIFT spectra of Au/AO-3.2 at 25 °C under: CO adsorption (left) and He purging (right) until the adsorption peaks become stable. Conditions: Gas flow rate of 20 ml·min⁻¹, 2 vol % CO in helium, 30 mg catalyst.

Figure S11. FT-IR spectra of Au-CuO/AO under different temperature at steady state in CO adsorption in the range of 2250-1980 cm⁻¹.
Figure S12. CO conversion over Au-CuO/AO as a function of reaction temperature, 2nd reaction cycle of calcined Au-CuO/AO (■), 1st (○) and 2nd (★) reaction cycles after reduction at 300 °C in H\textsubscript{2} for 1 h.

Table S1 Information of surface metal compositions revealed by XPS analysis.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Au/Cu</th>
<th>Au 4f (XPS)</th>
<th>Au0</th>
<th>Au+</th>
<th>BE of Au0 (eV)</th>
<th>Cu 2p</th>
<th>Cu+</th>
<th>Cu2+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au/AO</td>
<td>-</td>
<td>-</td>
<td>80.3%</td>
<td>19.7%</td>
<td>83.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cu/AO</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Au-Cu/AO</td>
<td>1:5.2</td>
<td>1:1.6</td>
<td>90.5%</td>
<td>9.5%</td>
<td>83.4</td>
<td>89.0%</td>
<td>11.9%</td>
<td>89.0%</td>
</tr>
</tbody>
</table>