Deposition of titania layer on spherical porous silica particles and their nanostructure-induced vapor sensing properties

Kota Shiba,a Toshiaki Takei,a Genki Yoshikawaa and Makoto Ogawaa,b

a World Premier International Research Center Initiative (WPI), International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

b School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Tumbol Payupnai, Amphoe Wangchan, Rayong, 21210, Thailand

*Corresponding author; e-mail: makoto.ogawa@vistec.ac.th
Fig. S1 A present setup for the vapor sensing tests.
Fig. S2 FT-IR spectra of S@T, S@T_ex, S@T_exc and S@T_c.
Fig. S3 Enlarged nitrogen adsorption/desorption isotherms of the samples shown in Fig. 3.
Fig. S4 Enlarged BJH pore size distributions of the samples (S and S@T_ex) shown in Fig. S3.
Fig. S5 TG-DTA curves of as-synthesized titania-stearic acid hybrid spherical particles.
Fig. S6 Nitrogen adsorption/desorption isotherms of the samples (S, S@T_ex and S@T) after the calcination at 1000 °C for 1 h.
Fig. S7 Optical microscope images of each coating before and after the vapor sensing tests.