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Fig. S1. (a) UV-vis absorption spectrum with corresponding photograph in the inset, (b) zeta-
potential, (c) TEM image and (d) mean size distribution histogram of GSH-capped Aux clusters; (e) 
schematic illustration depicting the molecule structures of Aux clusters and surface ligand (GSH).
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Fig. S2. (a) UV-vis absorption spectrum with corresponding photograph in the inset, (b) zeta-
potential, (c) TEM images and (d) mean size distribution histogram of citrate-capped Au NPs.
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Fig. S3. High-magnified cross-sectional FESEM images of Aux/ZnO NWs heterostructure on the (a) 
top and (b) at the bottom.
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Fig. S4. HRTEM images of Aux/ZnO NWs heterostructures.

d=0.26 nm (002)
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Fig. S5. X-ray absorption spectra (XAS) of Zn L-edge for (a) ZnO NWs and (b) Aux/ZnO NWs 
heterostructure under simulated solar light (AM 1.5G) irradiation and in the dark. Comparison on the 
XAS results of Zn L-edge for ZnO NWs and Aux/ZnO NWs heterostructure (c) under simulated 
solar light (AM 1.5G) irradiation and (d) in the dark.

Note: As shown in Fig. S5, negligible difference was observed in the XAS results of Zn L-edge for 
ZnO NWs and Aux/ZnO NWs heterostructure under simulated solar light irradiation and in the dark. 
On the contrary, XAS result of Aux/ZnO NWs heterostructure is different from ZnO NWs under the 
same simulated solar light irradiation or in the dark, with some characteristic peaks of ZnO shielded 
or substantially shifted, verifying the pronounced interaction between Aux clusters and ZnO NWs 
framework afforded by electrostatic self-assembly.
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Fig. S6. (a) LSV plots and (b) on-off transient photocurrent responses of Aux/ZnO NWs 
heterostructures with different dipping time in Aux aqueous solution under simulated solar light 
irradiation (AM 1.5). Decay of photovoltage after on-off irradiation under simulated solar light 
irradiation (AM 1.5) for ZnO NWs and Aux/ZnO NWs heterostructure with dipping time of (c) 36 h 
and (d) 48 h.

Note: Fig. S6 (a & b) show that photocurrent density of Aux/ZnO NWs heterostructures with 
different dipping time in Aux aqueous solution under simulated solar light irradiation follows the 
order of Aux/ZnO NWs (t=24 h)>Aux/ZnO NWs (t=36 h)>Aux/ZnO NWs (t=48 h)>ZnO NWs, from 
which the optimal dipping time is 24 h. Moreover, as shown in Fig. S6 (c & d), Aux/ZnO NWs (t=36, 
48 h) heterostructures still demonstrated the much more prolonged electron lifetime in comparison 
with ZnO NWs under the same conditions.
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Fig. S7. LSV plots of Aux/ZnO NWs heterostructures prepared by dipping ZnO NWs in Aux clusters 
aqueous solutions with different pH values for different dipping time: (a) pH = 5.0, t=24 h, and (b) 
pH = 6.6, t=48 h under simulated solar light irradiation with corresponding FESEM images 
displayed in (c) and (d), respectively.

Note: As shown in Fig. S7 (a & b), Aux/ZnO NWs heterostructures prepared by dipping ZnO NWs 
into Aux clusters aqueous solutions with pH values of 5.0 & 6.6 and dipping time of 24 & 48 h 
exhibited the negligible photocurrent under simulated solar light irradiation. The corresponding 
FESEM images in Fig. S7(c & d) show that 1D nanostructure of ZnO NWs matrix has been 
completely destroyed and it collapses to a large amount of small nanoparticles, thereby leading to the 
remarkably inferior PEC water splitting performances.

pH = 5.0, 24 h pH = 6.6, 48 hc d
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Fig. S8. I-t curves of ZnO NWs and Aux/ZnO NWs heterostructure under continuous simulated solar 
light irradiation (bias 0.3 V vs. RHE, AM 1.5, 100 mW/cm2).
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Fig. S9. PL spectra of Aux clusters and Aux/ZnO NWs heterostructure.
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Fig. S10. Monochromatic incident photon-to-electron conversion efficiency (IPCE) spectra of 
pristine ZnO NWs and Aux/ZnO NWs heterostructure.
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Fig. S11. UV-vis absorption spectra of Agx@GSH clusters aqueous solutions before and after ZnO 
NWs dipping for 24 h.
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Fig. S12. UV-vis diffuse reflectance spectra of ZnO NWs and Agx/ZnO NWs heterostructure.
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Fig. S13. UV-vis diffuse reflectance spectrum of Au NPs/ZnO NWs heterostructure.
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Fig. S14. (a) LSV plots and (b) on-off transient photocurrent responses of ZnO NWs and Agx/ZnO 
NWs heterostructure under visible light irradiation (λ>420 nm).
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Fig. S15. LSV plots and on-off transient photocurrent responses of Aux/ZnO NWs heterostructure in 
which ZnO NWs substrate was prepared by an electrodeposition method under (a & b) simulated 
solar light and (c & d) visible light irradiation (λ>420 nm), respectively.

Note: Aux/ZnO NWs heterostructure in which ZnO NWs substrate was prepared by an 
electrodeposition method still demonstrates significantly enhanced PEC water splitting performances 
in comparison with pristine ZnO NWs counterpart under both simulated solar and visible light 
irradiation, implying the vital role of Aux clusters as photosensitizer was undoubtedly ascertained 
regardless of the properties of the semiconductor matrix used. Noteworthily, onset potential of 
Aux/ZnO NWs was remarkably blue-shifted under visible light irradiation and this also substantiates 
the contribution role of Aux clusters.
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Fig. S16. FESEM images of ZnO NWs substrate prepared by an electrodeposition method.

Note: It is apparent that the morphology of ZnO NWs substrate prepared by an electrodeposition 
method is nearly the same to ZnO NWs substrate prepared via a solvent growth method, albeit both 
of which involve the similar seed deposition and growth process.
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Table S1. Binding energy vs chemical bond species for Aux/ZnO NWs heterostructure and ZnO 
NWs.

Element Aux/ZnO NWs vs ZnO NWs (eV) Chemical Bond Species
C 1s A 284.60/284.60 C-C/C-H
C 1s B 285.88/286.28 C-OH/C-O-C1

C 1s C 287.38/N.A. C-N6

C 1s D 288.78/288.68 -COO-/Carboxylate (CO3 
2-)/2

O 1s A 531.13/529.95 Lattice oxygen (Zn-O)
O 1s B 532.61/531.63 Surface hydroxyl (Zn-OH)3

O 1s C 533.75/N.A. -COOH4

Zn 2p3/2 1021.71/1021.21 Zn2+ 5

Zn 2p1/2 1044.78/1044.30 Zn2+

Au 4f7/2 83.75/83.75 (TiO2/Aux) Metallic Au (0)7

Au 4f7/2 85.18/84.85 (TiO2/Aux) Au (+)8
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Experimental section

Electrochemical deposition of ZnO NWs is carried out by our previous work.9 Prior to the deposition 

of ZnO NWs, FTO coated glass substrates were cleaned with detergent under sonication for 90 min, 

followed by washing with DI water. Then, ZnO NWs were deposited onto the pre-cleaned FTO-

coated glass substrates using an electrochemical approach. The deposition of ZnO NWs was carried 

out in a 50 mL three-chambered electrochemical cell. 40 mL of aqueous solution containing 5 mM 

Zn(NO3)2 and 50 mM NaNO3 (pH = 9) was used as the electrolyte, and the temperature was kept at 

85 oC in a hot water bath. Pre-cleaned FTO-coated glass, platinum (Pt) foil and saturated calomel 

electrode (SCE) were used as the working, counter and reference electrodes, respectively. The ZnO 

NWs were deposited onto FTO-coated glass substrates using a multi-potential step technique. A ZnO 

seed-layer was first deposited on FTO with a potential of -1.3 V vs. SCE for 10 seconds. Therefore, a 

constant potential of -1.0 V vs. SCE was applied for 2000 seconds. After the deposition, the as-

prepared films were rinsed with DI water, dried with compressed N2 flow and then annealed at 350 

oC in air.
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