Electronic Supplementary Material (ESI) for Nanoscale.
This journal is © The Royal Society of Chemistry 2017

Supporting information

In-situ Etching-induced Self-assembly of Metal Clusters
Decorated One-dimensional Semiconductor for Solar-powered
Water Splitting: Unraveling Cooperative Synergy by

Photoelectrochemical Investigations

Fang-Xing Xiao,** Bin Liub*

a. College of Materials Science and Engineering, Fuzhou, Fuzhou University.
b. School of Chemical and Biomedical Engineering, Nanyang Technological University, 62
Nanyang Drive, Singapore637459, Singapore. Fax: (65) 6794-7553; Tel: (65) 6513-7971;

E-mail: fxxiao@fzu.edu.cn
liubin@ntu.edu.sg

S1


mailto:liubin@ntu.edu.sg

0.6 -

‘.a s 5L b
S 04} % 10
s = [
8 3 f
§ $ 45
2 02} g
2 g8
§ N ol * }
oof . : : : . . . . . .
2 4 6 8 10 12
200 300 400 500 600 700 800 Hvalue

Wavelength (nm)

Frequency (%)

0.5 1.0 15 20

Diameter (nm)
H
O 0 - H O
H OJ\/\)J\H N \)J\ OH
NH, 0]

L-glutathione

Fig. S1. (a) UV-vis absorption spectrum with corresponding photograph in the inset, (b) zeta-
potential, (c) TEM image and (d) mean size distribution histogram of GSH-capped Au, clusters; (e)
schematic illustration depicting the molecule structures of Auy clusters and surface ligand (GSH).
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Fig. S2. (a) UV-vis absorption spectrum with corresponding photograph in the inset, (b) zeta-
potential, (¢c) TEM images and (d) mean size distribution histogram of citrate-capped Au NPs.
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Fig. S3. High-magnified cross-sectional FESEM images of Au,/ZnO NWs heterostructure on the (a)
top and (b) at the bottom.
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Fig. S4. HRTEM images of Au,/ZnO NWs heterostructures.
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Fig. S5. X-ray absorption spectra (XAS) of Zn L-edge for (a) ZnO NWs and (b) Au,/ZnO NWs
heterostructure under simulated solar light (AM 1.5G) irradiation and in the dark. Comparison on the
XAS results of Zn L-edge for ZnO NWs and Au,/ZnO NWs heterostructure (c) under simulated
solar light (AM 1.5G) irradiation and (d) in the dark.

Note: As shown in Fig. S5, negligible difference was observed in the XAS results of Zn L-edge for
ZnO NWs and Au,/ZnO NWs heterostructure under simulated solar light irradiation and in the dark.
On the contrary, XAS result of Au,/ZnO NWs heterostructure is different from ZnO NWs under the
same simulated solar light irradiation or in the dark, with some characteristic peaks of ZnO shielded
or substantially shifted, verifying the pronounced interaction between Au, clusters and ZnO NWs

framework afforded by electrostatic self-assembly.
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Fig. S6. (a) LSV plots and (b) on-off transient photocurrent responses of Au,/ZnO NWs
heterostructures with different dipping time in Au, aqueous solution under simulated solar light
irradiation (AM 1.5). Decay of photovoltage after on-off irradiation under simulated solar light
irradiation (AM 1.5) for ZnO NWs and Au,/ZnO NWs heterostructure with dipping time of (c) 36 h
and (d) 48 h.

Note: Fig. S6 (a & b) show that photocurrent density of Au,/ZnO NWs heterostructures with
different dipping time in Auy aqueous solution under simulated solar light irradiation follows the
order of Au,/ZnO NWs (t=24 h)>Au,/ZnO NWs (t=36 h)>Au,/ZnO NWs (t=48 h)>ZnO NWs, from
which the optimal dipping time is 24 h. Moreover, as shown in Fig. S6 (¢ & d), Au,/ZnO NWs (t=36,
48 h) heterostructures still demonstrated the much more prolonged electron lifetime in comparison
with ZnO NWs under the same conditions.
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Fig. S7. LSV plots of Au,/ZnO NWs heterostructures prepared by dipping ZnO NWs in Au, clusters
aqueous solutions with different pH values for different dipping time: (a) pH = 5.0, t=24 h, and (b)

pH = 6.6, t=48 h under simulated solar light irradiation with corresponding FESEM images
displayed in (¢) and (d), respectively.

Note: As shown in Fig. S7 (a & b), Au,/ZnO NWs heterostructures prepared by dipping ZnO NWs
into Au, clusters aqueous solutions with pH values of 5.0 & 6.6 and dipping time of 24 & 48 h
exhibited the negligible photocurrent under simulated solar light irradiation. The corresponding
FESEM images in Fig. S7(c & d) show that 1D nanostructure of ZnO NWs matrix has been

completely destroyed and it collapses to a large amount of small nanoparticles, thereby leading to the
remarkably inferior PEC water splitting performances.

S8



0.4

——2ZnO NWs
—— Au,/ZnO NWs

<03}
£
g
+ 0.2 o ~
2
>
&

0.1} —

0 500 1000 1500 2000 2500 3000 3500
Irradiation time (s)

Fig. S8. I-t curves of ZnO NWs and Au,/ZnO NWs heterostructure under continuous simulated solar
light irradiation (bias 0.3 V vs. RHE, AM 1.5, 100 mW/cm?).
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Fig. S9. PL spectra of Au, clusters and Au,/ZnO NWs heterostructure.
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Fig. S10. Monochromatic incident photon-to-electron conversion efficiency (IPCE) spectra of
pristine ZnO NWs and Au,/ZnO NWs heterostructure.
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Fig. S11. UV-vis absorption spectra of Ag,@GSH clusters aqueous solutions before and after ZnO
NWs dipping for 24 h.
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Fig. S12. UV-vis diffuse reflectance spectra of ZnO NWs and Ag,/ZnO NWs heterostructure.
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Fig. S13. UV-vis diffuse reflectance spectrum of Au NPs/ZnO NWs heterostructure.
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Fig. S14. (a) LSV plots and (b) on-off transient photocurrent responses of ZnO NWs and Ag,/ZnO
NWs heterostructure under visible light irradiation (A>420 nm).
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Fig. S15. LSV plots and on-off transient photocurrent responses of Au,/ZnO NWs heterostructure in
which ZnO NWs substrate was prepared by an electrodeposition method under (a & b) simulated
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solar light and (c & d) visible light irradiation (A>420 nm), respectively.

Note: Au,/ZnO NWs heterostructure in which ZnO NWs substrate was prepared by an
electrodeposition method still demonstrates significantly enhanced PEC water splitting performances
in comparison with pristine ZnO NWs counterpart under both simulated solar and visible light
irradiation, implying the vital role of Auy clusters as photosensitizer was undoubtedly ascertained
regardless of the properties of the semiconductor matrix used. Noteworthily, onset potential of
Au,/ZnO NWs was remarkably blue-shifted under visible light irradiation and this also substantiates

the contribution role of Au, clusters.
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Fig. S16. FESEM images of ZnO NWs substrate prepared by an electrodeposition method.
Note: It is apparent that the morphology of ZnO NWs substrate prepared by an electrodeposition

method is nearly the same to ZnO NWs substrate prepared via a solvent growth method, albeit both
of which involve the similar seed deposition and growth process.
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Table S1. Binding energy vs chemical bond species for Au,/ZnO NWs heterostructure and ZnO

NWs.

Element Au,/ZnO NWs vs ZnO NWs (eV) Chemical Bond Species
ClsA 284.60/284.60 C-C/C-H
ClsB 285.88/286.28 C-OH/C-O-C!
ClsC 287.38/N.A. C-N¢
ClsD 288.78/288.68 -COO/Carboxylate (CO; *)/?
OlsA 531.13/529.95 Lattice oxygen (Zn-0O)
O1lsB 532.61/531.63 Surface hydroxyl (Zn-OH)?
O1sC 533.75/N.A. -COOH*

Zn 2ps3; 1021.71/1021.21 Zn**>

Zn 2p; 1044.78/1044.30 Zn**

Au 4f;), 83.75/83.75 (TiO,/Auy) Metallic Au (0)’

Au 4f;), 85.18/84.85 (TiO,/Auy) Au (+)3
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Experimental section

Electrochemical deposition of ZnO NWs is carried out by our previous work.? Prior to the deposition
of ZnO NWs, FTO coated glass substrates were cleaned with detergent under sonication for 90 min,
followed by washing with DI water. Then, ZnO NWs were deposited onto the pre-cleaned FTO-
coated glass substrates using an electrochemical approach. The deposition of ZnO NWs was carried
out in a 50 mL three-chambered electrochemical cell. 40 mL of aqueous solution containing 5 mM
Zn(NOs), and 50 mM NaNO; (pH = 9) was used as the electrolyte, and the temperature was kept at
85 °C in a hot water bath. Pre-cleaned FTO-coated glass, platinum (Pt) foil and saturated calomel
electrode (SCE) were used as the working, counter and reference electrodes, respectively. The ZnO
NWs were deposited onto FTO-coated glass substrates using a multi-potential step technique. A ZnO
seed-layer was first deposited on FTO with a potential of -1.3 V vs. SCE for 10 seconds. Therefore, a
constant potential of -1.0 V vs. SCE was applied for 2000 seconds. After the deposition, the as-
prepared films were rinsed with DI water, dried with compressed N, flow and then annealed at 350

°C in air.
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