Lithiation-assisted exfoliation and reduction of SnS$_2$ to SnS decorated on lithium-integrated graphene for efficient energy storage

Bing Zhao,a Fang Chen,a Zhixuan Wang,a Shoushuang Huang,b Yong Jiang a and Zhiwen Chen a,b

a School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. E-mail: jiangyong@shu.edu.cn

b Shanghai Applied Radiation Institute, Shanghai University, Shanghai 201800, China. E-mail: zwchen@shu.edu.cn
Fig. S1. XRD patterns of the hydrothermally synthesized SnS$_2$ and its calcination product. The results reveal that the calcination product is still hexagonal SnS$_2$ without any reduction.

Fig. S2. Thermogravimetric analysis of the SnS/GNS nanocomposite.
Fig. S3. XRD patterns of the SnS, SnS+GNS and SnS/GNS nanocomposites.

Fig. S4. The BJH desorption pore size distributions of SnS, SnS+GNS and SnS/GNS nanocomposites.
Fig. S5. High-resolution XPS spectra for the C 1s and O 1s of (a,c) SnS+GNS and (b,d) SnS/GNS nanocomposites.
Fig. S6. First ten cyclic voltammograms between 0.01 V and 3 V of (a) pure phase stripped SnS and (b) SnS+GNS; Galvanostatic voltage profiles of (c) pure SnS and (d) SnS+GNS; Differential charge-capacity plots at the 1st, 2nd, 5th, 10th and 50th cycle for (e) pure SnS and (f) SnS+GNS.
Fig. S7. Nyquist plots of SnS, SnS+GNS and SnS/GNS fresh electrodes (a) and at the 10th cycle with amplitude 5.0 mV over the frequency range 100 kHz to 0.01 Hz.