Supplementary Information

Large-area niobium disulfide thin films as transparent electrodes for devices based on two-dimensional materials

Hunyoung Bark, Yongsuk Choi, Jaehyuck Jung, Jung Hwa Kim, Hyuckjoon Kwon, Jinhwan Lee, Zonghoon Lee, Jeong Ho Cho and Changgu Lee

a SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Korea
b School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Korea
c School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea

*Correspondence: Professor C Lee, 85293, Cooperate collaboration center, Sungkyunkwan Univ., 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, Republic of Korea 16419/ telephone: +82-31-299-4844/ Fax: +82-31-299-7930/ peterlee@skku.edu
NbS\textsubscript{2} film thickness

Figure S1. Atomic force microscopy (AFM) images of synthesized NbS\textsubscript{2} films with various thicknesses. (a,b,c) Topological images and (d,e,f) line profiles of 2-, 4-, and 8-layer NbS\textsubscript{2} films, respectively.
Device fabrication process

Figure S2. Schematic of the process used to fabricate an ion-gel gated MoS$_2$ FET with an NbS$_2$ electrode.

Photographic image of a fabricated device

Figure S3. Photograph of an array of ion-gel gated MoS$_2$ FETs using NbS$_2$ electrode. The inset shows an optical microscope image of a single device.