Supporting Information

InPZnS alloy quantum dot with tris(hexylthio)phosphine as a dual anionic precursor

Soyeon An, Hyelim Cho, Heungbae Jeon* and Sang-Wook Kim*

Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
Department of chemistry, Kwangwoon University, Seoul, 130-701, Korea
Figure S1. (a) 1H NMR of tris(hexylthio)phosphine
(b) 13C NMR of tris(hexylthio)phosphine
Figure S2. The FAB-Mass
(a) tris(hexylthio)phosphine.
(b) tris(hexylthio)phosphine(THTP) and diethylzinc complex.
(c) ethyldihexylthiophosphine.
Figure S3. (a) photoluminescence spectra of InPZnS alloy core ($\lambda=570$ nm). (b) XRD diagram of InPZnS alloy core (THTP, Et$_2$Zn used 0.24 mmol without ZnCl$_2$)
Figure S4. XRD diagram of THTP/Et2Zn ratio. As the diethylzinc amount increases, the XRD peak shifts toward ZnS.
Figure S5. TEM images of InPZnS alloy core using different zinc precursor (a) ZnCl₂ (b) ZnBr₂ (c) ZnI₂. (d) XRD diagram using different zinc precursor.
Figure S6. TEM images of InPZnS/ZnS using different zinc precursor (a) ZnCl2 (b) ZnBr2 (C) ZnI2.