In situ tailoring of superconducting junctions via electro-annealing

Supplementary Materials

J. Lombardo,1 Ž. L. Jelić,1,2 X. D. A. Baumans,1 J. E. Scheerder,3 Jorge P. Nacenta,4 V. V. Moshchalkov,4 J. Van de Vondel,3 M. V. Milošević,2 R. B. G. Kramer,4 and A. V. Silhanek1

1Experimental Physics of Nanostructured Materials, Q-MAT, CESAM, Université de Liège, B-4000 Sart Tilman, Belgium
2Department Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
3Laboratory of Solid-State Physics and Magnetism, KU Leuven, Celestijnenlaan 200 D, box2414, BE–3001 Leuven, Belgium
4Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France

Figure S1: Details of amorphization by electro-annealing. (a) High-resolution SEM image of the constriction in the virgin state. (b) Constriction after several electro-annealing processes. One notices a structural change in the constriction: the initially granular structure underwent amorphization.

Figure S1 shows high resolution scanning electron microscopy images of a Nb nanoconstriction before (Fig. S1(a)) and after several electro-annealing processes (Fig. S1(b)). In Fig. S1(a), the polycrystalline structure of the virgin Nb nanoconstrictions is clearly visible. Under electro-annealing, this polycrystalline structure vanishes locally and leaves place for an amorphized central area responsible for the formation of a weak link.
Figure S2: Time dependence of electro-annealing process. Resistance as a function of time (upper panel) for the corresponding current (lower panel). The measurements have been performed at 10 K.

Figure S2 shows the time dependence of the electro-annealing process. The lower panel shows steps of constant current. The upper panel shows that even if the current remains constant, the electro-annealing process evolves in time for currents above certain threshold current. This points out to the importance of properly defining the electro-annealing current.