Supporting Information

Size and surface controllable metal-organic frameworks (MOFs) for fluorescence imaging and cancer therapy

Xuechuan Gao, Ruixue Cui, Guanfeng Ji, Zhiliang Liu*

College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China. E-mail: cezlliu@imu.edu.cn

Supplementary Information:

Experimental section

Figure S1. Chemical structures of 5-FU (A), 5-FAM (B) and FA (C)

Figure S2. The calibration curve of 5-FU

Figure S3. The calibration curve of FA

Figure S4. The calibration curve of 5-FAM

Figure S5. SEM images of UIO-66-NH$_2$ with different sizes (a-d)

Table S1. BET surface area comparison between reported UIO-66-NH$_2$ and the synthesized UIO-66-NH$_2$ (50 nm) in this paper.

Figure S6. FTIR spectra of H$_2$BDC (A), UIO-66-NH$_2$ with different sizes (B-D)

Figure S7. TGA cures of UIO-66-NH$_2$ with different sizes (A-D)

Figure S8. BET surface area of UIO-66-NH$_2$/5-FU (A) and UIO-66-NH$_2$-FA-5-FAM/5-FU (B).

The particle size of UIO-66-NH$_2$ used is 50 nm.

Figure S9. (a) SEM-EDX mapping of UIO-66-NH$_2$; (b) SEM-EDX mapping of UIO-66-NH$_2$-FA-5-FAM/5-FU; (c) SEM-EDX mapping of UIO-66-NH$_2$-FA-5-FAM/5-FU after drug release. The particle size of UIO-66-NH$_2$ used is 50 nm

Figure S10. Solid UV-visible spectra of 5-FU (A), 5-FAM (B), FA (C), UIO-66-NH$_2$ (D) and UIO-66-NH$_2$-FA-5-FAM/5-FU (E).

Figure S11. TGA cures of UIO-66-NH$_2$ (A) and UIO-66-NH$_2$-FA-5-FAM/5-FU (B)

Figure S12. The excitation (A) and emission (B) spectra of 5-FAM and the excitation (C) and emission (D) spectra of UIO-66-NH$_2$-FA-5-FAM/5-FU

Figure S13. The excised tumors from mice groups treated with free 5-FU at 28nd day
Experimental Section

Preparation of UIO-66-NH$_2$-FA-5-FAM

Typically, 0.1 g UIO-66-NH$_2$, 0.2 g FA and 0.2 g 5-FAM were added to aqueous solution. Afterwards, 0.1 g N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride (EDC) was added to the above solution, which was subsequently stirred in the dark at room temperature for 16 h to allow the FA and 5-FAM to conjugate onto the UIO-66-NH$_2$. The obtained UIO-66-NH$_2$-FA-5-FAM nanocomposite was isolated from solution through centrifugation, followed by washing with water and then kept in water for drug release study and then dried under vacuum at 25 °C.

Preparation of UIO-66-NH$_2$-5-FAM/5-FU

Typically, 0.1 g 5-FU loaded UIO-66-NH$_2$, 0.2 g 5-FAM were added to saturated aqueous solution of 5-FU. Afterwards, 0.1 g N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride (EDC) was added to the above solution, which was subsequently stirred in the dark at room temperature for 16 h to allow the 5-FAM to conjugate onto the UIO-66-NH$_2$. The obtained UIO-66-NH$_2$-5-FAM/5-FU nanocomposite was isolated from solution through centrifugation, followed by washing with water and then dried under vacuum at 25 °C.
Figure S1. Chemical structures of 5-FU (A), 5-FAM (B) and FA (C)

Figure S2. The calibration curve of 5-FU

Figure S3. The calibration curve of FA
Table S1. BET surface area comparison between reported UIO-66-NH$_2$ and the synthesized UIO-66-NH$_2$ (50 nm) in this paper.

<table>
<thead>
<tr>
<th>BET surface area of UIO-66-NH$_2$</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>826 m2/g</td>
<td>This work</td>
</tr>
<tr>
<td>816 m2/g</td>
<td>[1]</td>
</tr>
<tr>
<td>931 m2/g</td>
<td>[2]</td>
</tr>
<tr>
<td>1075 m2/g</td>
<td>[3]</td>
</tr>
<tr>
<td>1258 m2/g</td>
<td>[4]</td>
</tr>
<tr>
<td>1181 m2/g</td>
<td>[5]</td>
</tr>
</tbody>
</table>
Figure S6. FTIR spectra of H$_2$BDC (A), UIO-66-NH$_2$ with different sizes (B-D)

Figure S7. TGA curves of UIO-66-NH$_2$ with different sizes (A-D)

Figure S8. Nitrogen adsorption-desorption isotherms of UIO-66-NH$_2$/5-FU (A) and UIO-66-NH$_2$-FA-5-FAM/5-FU (B). The particle size of UIO-66-NH$_2$ used is 50 nm.
Figure S9. (a) SEM-EDX mapping of UIO-66-NH$_2$; (b) SEM-EDX mapping of UIO-66-NH$_2$-FA-5-FAM/5-FU; (c) SEM-EDX mapping of UIO-66-NH$_2$-FA-5-FAM/5-FU after drug release. The particle size of UIO-66-NH$_2$ used is 50 nm.

Figure S10. Solid UV-visible spectra of 5-FU (A), 5-FAM (B), FA (C), UIO-66-NH$_2$ (D) and UIO-66-NH$_2$-FA-5-FAM/5-FU (E). The particle size of UIO-66-NH$_2$ used is 50 nm.
Figure S11. TGA curves of UIO-66-NH$_2$ (A) and UIO-66-NH$_2$-FA-5-FAM/5-FU (B). The particle size of UIO-66-NH$_2$ used is 50 nm.

Figure S12. The excitation (A) and emission (B) spectra of 5-FAM and the excitation (C) and emission (D) spectra of UIO-66-NH$_2$-FA-5-FAM/5-FU. The particle size of UIO-66-NH$_2$ used is 50 nm.

Figure S13. The excised tumors from mice groups treated with free 5-FU at 28nd day
Reference

