Supporting Information

CdS nanospheres decorated hollow polyhedral ZCO derived from metal-organic framework (MOF) for effective photocatalytic water evolution

Wenxia Chena, Jiasheng Fanga, Yiwei Zhanga*, Guangliang Chenb, Shuo Zhaoa, Chao Zhanga, Ran Xua, Jiehua Baoa, Yuming Zhoua*, Xin Xianga

aSchool of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing 211189, P. R. China.

bKey Laboratory of Advanced Textile Materials and Manufacturing Technology, and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China

* Corresponding authors. E-mail: zhangchem@seu.edu.cn; ymzhou@seu.edu.cn. Tel: +86 25 52090617; Fax: +86 25 52090617.
Fig. S1 Thermogravimetric analysis (TGA) curve of as-prepared bimetallic ZnCo-ZIF and ZIF-67 under N$_2$ with a ramp of 10 °C · min$^{-1}$.
Fig. S2 (a) XRD patterns of ZCO, (b) SEM images of ZCO, (c) SEM images of Co$_3$O$_4$, The SEM images of Co$_3$O$_4$ sample fabricated with different temperature: (d) 350 °C, (e) 450 °C, (f) 550 °C.
Fig. S3 (a) XRD patterns of ZnCo-ZIF, (b) low-magnification and (c) high-magnification FESEM images of ZnCo-ZIF, (d) XRD patterns of ZIF-67, (e) low-magnification and (f) high-magnification FESEM images of ZIF-67.
Fig. S4 EDS spectra of the 30wt% CdS/ZCO sample.
Fig. S5 TEM images of ZCO.
Fig. S6 TEM images of 30 wt% CdS/ZCO and the corresponding TEM elemental mapping of O, Zn, S, Cd and Co.
Fig. S7 (a) TEM image of CdS, (b) XRD patterns of CdS.
Fig. S8 (a) UV-Vis absorption spectra of ZCO and Co$_3$O$_4$, (b) Band gap value of ZCO and Co$_3$O$_4$.
Fig. S9 The H$_2$ evolution rates of CdS/ZCO loaded with different CdS percentages when the sacrifice agent is methanol.
Fig. S10 The H$_2$ evolution rates of CdS/ZCO and ZCO without amino group when sacrifice agent is lactic acid.
Table S1 The summary of the atomic compositions of the composites calculated with the EDX data.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Atomic concentration (%)</th>
<th>Atomic ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>C</td>
</tr>
<tr>
<td>10 wt% CdS/ZCO</td>
<td>4.6</td>
<td>26.7</td>
</tr>
<tr>
<td>20 wt% CdS/ZCO</td>
<td>10.7</td>
<td>34.2</td>
</tr>
<tr>
<td>30 wt% CdS/ZCO</td>
<td>14.9</td>
<td>37.4</td>
</tr>
<tr>
<td>50 wt% CdS/ZCO</td>
<td>6.6.</td>
<td>36.5</td>
</tr>
</tbody>
</table>