Facet-dependent photocatalytic decomposition of N$_2$O on the anatase TiO$_2$: A DFT study

Lu Wang1, Weiyu Song1, Jianlin Deng, Huiling Zheng, Jian Liu*, Zhen Zhao, Manglai Gao, Yuechang Wei

State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum-Beijing, Beijing 102249, P. R. China

* Corresponding author

E-mail addresses: liujian@cup.edu.cn

1 The both authors contribute equally to this paper
Contents:

1. Supplementary computational details of the relative level of CBM for (101) facets and (001) facets
2. Supplementary computational details of crystal orbital Hamiltonian population (COHP)
3. Supplementary Figures
4. Supplementary Tables
1. Supplementary computational details of the relative level of CBM (Conduction Band Minimum) for (101) facets and (001) facets

We calculated the local potential along the z-axis of the (101) facets and (001) facets which are shown in Figure S1 and Figure S2, respectively. We selected a point deep in the vacuum (18 Å) as the reference energy for (101) facets and (001) facets. In this point, the local potential are 3.29 eV and 2.81 eV, respectively. The difference of electrostatic potential is 0.48 eV. The original CBM for (101) facets and (001) facets are -0.61 eV and -0.38 eV, respectively. Therefore, the CBM for (001) facets is 0.71 eV higher than that for (101) facets.
2. Supplementary computational details of crystal orbital Hamiltonian population (COHP)

The bonding analysis have been performed through the use of the crystal orbital Hamiltonian population (COHP)1,2 by the Lobster code3,4. The COHP can measure the magnitude and sign of the bond order energy overlap between atomic orbitals located on different atoms. It can determine the bonding or the antibonding nature of orbital fragments. It can also measure the interaction strength between two atomic orbitals.

8 References

3. Supplementary Figures

Fig. S1 The local potential along the z-axis of the (101) facets
Fig. S2 The local potential along the z-axis of the (001) facets
Fig. S3 Relative energy diagram for the removal of O$^-$ on (101) facets (O$^-$ react with another O$^-$)
Fig. S4 Relative energy diagram for the removal of O\(^{-}\) on (101) facets (O\(^{-}\) react with N\(_2\)O)
Fig. S5 Relative energy diagram for the removal of O^- on (001) facets (O^- react with another O^-)
Fig. S6 Relative energy diagram for the removal of O$^-$ on (001) facets (O$^-$ react with N$_2$O)
Fig. S7 - COHP between Ti-O for (001) and (101) facets. Fermi level is set to zero.
Fig. S8 -COHP between Ti-O for (001) and (101) facets. Fermi level is set to zero.
Fig. S9 -COHP between Ti-O$^{2-}$ for (001) and (101) facets. Fermi level is set to zero
4. Supplementary Figures

Table S1 The integrated ICOHP value of O-Ti on different facets

<table>
<thead>
<tr>
<th>Facets</th>
<th>State of O</th>
<th>ICOHP value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>O</td>
<td>-2.61</td>
</tr>
<tr>
<td>101</td>
<td>O^{-}</td>
<td>-3.68</td>
</tr>
<tr>
<td></td>
<td>O^{2-}</td>
<td>-5.49</td>
</tr>
<tr>
<td>001</td>
<td>O</td>
<td>-3.61</td>
</tr>
<tr>
<td></td>
<td>O^{-}</td>
<td>-3.96</td>
</tr>
<tr>
<td></td>
<td>O^{2-}</td>
<td>-5.59</td>
</tr>
</tbody>
</table>