Supporting Information

Synthesis of Nickel Germanide (Ge$_{12}$Ni$_{19}$) Nanoparticles for Durable Hydrogen Evolution Reaction in Acid Solutions

Jee-Yee Chen, Shao-Lou Jheng and Hsing-Yu Tuan*

†Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan. E-mail: hytuan@che.nthu.edu.tw

AUTHOR EMAIL ADDRESS: a1593577852@hotmail.com, jeeyeechen@gmail.com

*Corresponding author.

Phone: (886)3-571-5131

Email: hytuan@che.nthu.edu.
Figure S1. SEM images of Ge$_{12}$Ni$_{19}$ nanoparticles sonicated in four different washing solvent: (a - c) THF, (d - f) toluene, (g - i) acetic acid, and (j - l) Saturated NaBH$_4$ in THF for different time: (a, d, g, h) 30 minutes, (b, e, h, k) 60 minutes and (c, f, i, l) 90 minutes.
The calculation for the energy conversion.

Electrolysis voltage $= 2.2 \text{ V}$

Electrolysis current $= 120 \text{ mA}$

Consumption wattage $= 2.2 \text{ V} \times 0.12 \text{ A}$

$= 0.264 \text{ W}$

Hydrogen evolution rate $= 0.12 \text{ A}$

$= 5.7 \times 10^{-7} \text{ mol s}^{-1}$

$= 0.163 \text{ J s}^{-1}$

$= 0.063 \text{ W}$

Electrolysis efficiency $= \frac{\text{Hydrogen evolution rate}}{\text{Consumption wattage}}$

$= \frac{0.163 \text{ W}}{0.264 \text{ W}}$

$= 61.7 \%$