Electronic Supporting Information

2,2,2-Trifluoroethanol as a Tool to Control Nucleophilic Peptide Arylation

D. Gimenez, A. Dose, N. L. Robson, G. Sandford, S. L. Cobb and C. R. Coxon

School of Pharmacy and Biomolecular Sciences, Byrom Street Campus, Liverpool John Moores University, Liverpool, L3 3AF, U.K.

Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, U.K.

*Corresponding Authors E-Mail: c.r.coxon@ljmu.ac.uk; s.l.cobb@durham.ac.uk;

Materials and general methods ..4
Model peptide tagging and stapling with perfluoroaromatics: ..5
General procedure for solution phase peptide tagging and stapling ..5
LC/MS analysis of small scale reactions, Entries 1-22 ..5
Solvent effect: DMF vs. TFE, using DIPEA. Entries 1-12, Table1 ...5
Effect of the base: DIPEA vs Cs₂CO₃. Entries 13-18, Table1 ...12
Selective tagging of pep4. Entries 19-22, Table 2 ..16
Isolation and characterization of compounds 4-14 ...18
General methods ..18
Product 4 ...19
General structure and characterization data ..20
19F-NMR ..20
Product 5 ...20
General structure and characterization data ..21
QToF-LC/MS ..21
QToF-MS/MS ...22
19F-NMR ..22
Product 6 ...23
General structure and characterization data ..23
QToF-LC/MS ..23
QToF-MS/MS ...24

Electronic Supporting Information
19F-NMR ... 24

Product 7 ... 25
General structure and characterization data .. 25
 QToF-LC/MS .. 25
 QToF-MS/MS .. 26
 19F-NMR .. 26

Product 8 ... 27
General structure and characterization data .. 27
 QToF-LC/MS .. 27
 QToF-MS/MS .. 28
 19F-NMR .. 28

Product 9 ... 29
General structure and characterization data .. 29
 QToF-LC/MS .. 29
 QToF-MS/MS .. 30
 19F-NMR .. 30

Product 10 ... 31
General structure and characterization data .. 31
 QToF-LC/MS .. 31
 QToF-MS/MS .. 32
 19F-NMR .. 32

Product 11 ... 33
General structure and characterization data .. 33
 QToF-LC/MS .. 33
 QToF-MS/MS .. 34
 19F-NMR .. 34

Product 12 ... 35
General structure and characterization data .. 35
 QToF-LC/MS .. 35
 QToF-MS/MS .. 36
 19F-NMR .. 36

Product 13 ... 37
General structure and characterization data .. 37
 QToF-LC/MS .. 37
QToF-MS/MS ... 38

19F-NMR ... 38

Product 14 ... 39

General structure and characterization data 39

QToF-LC/MS ... 39

QToF-MS/MS ... 40

19F-NMR ... 40
Materials and general methods

All chemicals and solvents were analytical grade and used without further purification. Liquid chromatography-mass spectrometry (LC/MS; ESI+ mode) analyses were performed on a Acquity UPLC BEH C18 column (1.7 μm 2.1 mm x 50 mm) using a Waters Acquity UPLC system equipped with a photodiode array detector, providing absorbance data from 210 nm to 400 nm. A gradient with eluent I (0.1% HCOOH in water) and eluent II (0.1% HCOOH in acetonitrile) rising linearly from 5 to 95% of II during t=0.2–4.0 min was applied at a flow rate of 0.6 ml/min after 0.2 min of 95% solvent I initial equilibration. High-resolution QToF-LC/MS and QToF-MS/MS analyses were performed in a Acquity UPLC BEH C18 column (1.7 μm, 2.1 mm x 50 mm) using a Waters Acquity UPLC system coupled to Micromass QToF Premier mass spectrometer, also equipped with a photodiode array detector providing absorbance data from 210 nm to 400 nm. A gradient with eluent I (0.1% HCOOH in water) and eluent II (0.1% HCOOH in acetonitrile) rising linearly from 0 to 99% of II during t=0.0–5.0 min was applied at a flow rate of 0.6 ml/min. 19F NMR spectra studies were recorded at 376MHz in a Bruker Advance spectrometer at 298 K, using 8 scans with a relaxation delay of 1s. All data has been processed using Mestrenova® software.

Peptides (pep1-4) were prepared using conventional Fmoc/tBu SPSS procedures. Full experimental details and characterisation of pep1-4 are given in -

Model peptide tagging and stapling with perfluoroaromatics:

General procedure for solution phase peptide tagging and stapling

Solid crude peptides pep1-3 (2 mg, approx. 2.5 µmol) were dissolved in the DMF or TFE (0.5 mL) in a 1.5 mL plastic Eppendorf tube, to which a Cs$_2$CO$_3$ or DIPEA stock solution (50 mM in appropriate solvent, 0.5 mL) was added. Pentafluoropyridine (1) or hexafluorobenzene (3) was added in 5 equivalents and the tube was shaken vigorously at room temperature for 4.5 h. After removal of volatiles under vacuum, all products were redissolved in an 8:1:1 mixture of DMF/H$_2$O/MeCN (1mL) and characterised by LC/MS (ESI+). When formation of novel compounds was observed, 10-fold scaled reactions were employed in all cases for product isolation and purification in order to afford a complete characterisation. Scaled reactions were run under exactly the same conditions but in argon-flushed syringes, to avoid air bubbles where volatile aromatic compounds could concentrate. LC/MS data for crude reactions is provided next.

LC/MS analysis of small scale reactions 1-22

Effect of the solvent: DMF vs. TFE, using DIPEA. Entries 1-12 from Table 1 (main article)

Entry 1: Ac-YCGGGCAL- NH$_2$ + HEXAFLUOROBENZENE in DMF/DIPEA:

![LC/MS traces at λ= 280 (middle panel) and λ= 220 nm (lower panel) of crude reaction of peptide pep1 with hexafluorobenzene when using DIPEA as a base in DMF.](image)

Figure SI01. LC/MS traces at λ= 280 (middle panel) and λ= 220 nm (lower panel) of crude reaction of peptide pep1 with hexafluorobenzene when using DIPEA as a base in DMF.
Entry 2: Ac-YSGGGSAL-NH$_2$ + HEXAFLUOROBENZENE in DMF/DIPEA:

![Figure SI02](image)

Figure SI02. LC/MS traces at $\lambda=220$ nm of crude reaction of peptide pep2 with hexafluorobenzene when using DIPEA as a base in DMF.

Entry 3: Ac-YKGGGKAL- NH$_2$ + HEXAFLUOROBENZENE in DMF/DIPEA:

![Figure SI03](image)

Figure SI03. LC/MS traces $\lambda=220$ nm of crude reaction of peptide pep3 with hexafluorobenzene when using DIPEA as a base in DMF.
Entry 4: Ac-YCGGGCAL- NH₂ + PENTAFLUOROPYRIDINE in DMF/DIPEA:

<table>
<thead>
<tr>
<th>Peak</th>
<th>Retention time (min)</th>
<th>m/z</th>
<th>Identity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.946</td>
<td>820</td>
<td>Starting peptide [M+MeCN]⁺</td>
</tr>
<tr>
<td>2</td>
<td>2.706</td>
<td>1082</td>
<td>Double ArF addition [M+2ArF]⁺</td>
</tr>
<tr>
<td>3</td>
<td>3.074</td>
<td>1138</td>
<td>[M+2ArF⁺+TFA]²⁺</td>
</tr>
<tr>
<td>4</td>
<td>3.175</td>
<td>1231</td>
<td>Triple ArF addition [M+3ArF]⁺</td>
</tr>
</tbody>
</table>

Figure SI04. LC/MS traces at λ=280 nm of crude reaction of peptide pep1 with pentafluoropyridine when using DIPEA as a base in DMF.

Entry 5: Ac-YSGGGSAL- NH₂ + PENTAFLUOROPYRIDINE in DMF/DIPEA:

Figure SI05. LC/MS traces at λ=220 nm of crude reaction of peptide pep2 with pentafluoropyridine when using DIPEA as a base in DMF.
Entry 6: Ac-YKGGGKAL-\(\text{NHz}_2\) + PENTAFLUOROPYRIDINE in DMF/DIPEA:

Figure SI6. LC/MS traces at \(\lambda=220\) nm of crude reaction of peptide pep3 with pentafluoropyridine when using DIPEA as a base in DMF.

Entry 7: Ac-YCGGGCAL-\(\text{NHz}_2\) + HEXAFLUOROBENZENE in TFE/DIPEA:

Figure SI7. LC/MS traces at \(\lambda=220\) nm of crude reaction of peptide pep1 with hexafluorobenzene when using DIPEA as a base in TFE.
Entry 8: Ac-YSGGSAL- NH$_2$ + HEXAFLUOROBENZENE in TFE/DIPEA:

Figure SI8. LC/MS traces at $\lambda=220$ nm of crude reaction of peptide pep2 with hexafluorobenzene when using DIPEA as a base in TFE.

Entry 9: Ac-YKGGGKAL- NH$_2$ + HEXAFLUOROBENZENE in TFE/DIPEA:

Figure SI9. LC/MS traces at $\lambda=220$ nm of crude reaction of peptide pep3 with hexafluorobenzene when using DIPEA as a base in TFE.
Entry 10: Ac-YCGGGCAL-NH₂ + PENTAFLUOROPYRIDINE in TFE/DIPEA:

```
783 Da  →  +115 Da /[M+TFA]⁺  →  898 Da
Starting

+149 Da (4F-Pyr)  →
932 Da  →  +57 Da /[2M+TFA]²⁺  →  989 Da
1-ArF

+149 Da (4F-Pyr)  →
1081 Da
2-ArF
```

Figure SI10. LC/MS traces at λ=220 nm of crude reaction of peptide pep1 with pentafluoropyridine when using DIPEA as a base in TFE. Upper figure showing the scheme corresponding to adduct formation on the basis of the observed masses.
Entry 11: Ac-YSGGGSAL-NH$_2$ + PENTAFLUOROPYRIDINE in TFE/DIPEA:

![Figure SI11](C:/Users/pcnf5...DG024A_1501.raw) Injection 1 MS ES+ MS+ spectrum 1.85..2.24

Figure SI11. LC/MS traces at $\lambda=220$ nm of crude reaction of peptide pep2 with pentafluoropyridine when using DIPEA as a base in TFE.

Entry 12: Ac-YKGGGKAL-NH$_2$ + PENTAFLUOROPYRIDINE in TFE/DIPEA:

![Figure SI12](C:/Users/pcnf5...rated_water.raw) Injection 1 PDA - Chromatogram 220 nm

Figure SI12. LC/MS traces at $\lambda=220$ nm of crude reaction of peptide pep3 with pentafluoropyridine when using DIPEA as a base in TFE
Effect of the base: DIPEA vs Cs₂CO₃. **Entries 13-18 from Table 1 (main article)**

Entry 13: Ac-YCGGCal- NH₂ + HEXAFLUOROBENZENE in TFE/Cs₂CO₃:

Figure S113. LC/MS traces at λ=220 nm of crude reaction of peptide pep1 with hexafluorobenzene when using Cs₂CO₃ as a base in TFE.

Entry 14: Ac-YSGGSAL- NH₂ + HEXAFLUOROBENZENE in TFE/Cs₂CO₃:

Figure S114. LC/MS traces at λ=220 nm of crude reaction of peptide pep2 with hexafluorobenzene when using Cs₂CO₃ as a base in TFE.
Entry 15: Ac-YKGGKAL- NH$_2$ + HEXAFLUOROBENZENE in TFE/Cs$_2$CO$_3$:

Figure S115. LC/MS traces at λ=220 nm of crude reaction of peptide pep3 with hexafluorobenzene when using Cs$_2$CO$_3$ as a base in TFE.
Entry 16: Ac-YCGGCal-NH₂ + Pentafluoropyridine in TFE/C₅O₃₂:

- **Starting:** 783 Da
- **1-ArF:** 932 Da + 57 Da /[2M+TFA]²⁺ → 989 Da +149 Da (4F-Pyr)
- **2-ArF:** 1081 Da + 57 Da /[2M+TFA]²⁺ → 1138 Da +149 Da (4F-Pyr)
- **3-ArF:** 1230 Da

Figure SI16. LC/MS traces at λ=220 nm of crude reaction of peptide pep1 with pentafluoropyridine when using Cs₂CO₃ as a base in TFE. Upper figure showing the scheme corresponding to adduct formation on the basis of the observed masses.
Entry 17: Ac-YSGGSAL- NH$_2$ + PENTAFUOROPYRIDINE in TFE/CS$_2$CO$_3$

Figure SI17. LC/MS traces at λ=220 nm of crude reaction of peptide pep2 with pentafluoropyridine when using CS$_2$CO$_3$ as a base in TFE.

Entry 18: Ac-YKGGGKAL- NH$_2$ + PENTAFUOROPYRIDINE in TFE/CS$_2$CO$_3$

Figure SI18. LC/MS traces at λ=220 nm of crude reaction of peptide pep3 with pentafluoropyridine when using CS$_2$CO$_3$ as a base in TFE.
Selective tagging of **pep4**. Entries 19-22 from Table 2 (main article)

Entry 19: Ac-FKACGKGCA - NH₂ + HEXAFLUOROBENZENE in DMF/DIPEA

Figure SI19. LC/MS traces at λ=220 nm of crude reaction of peptide **pep4** with hexafluorobenzene when using DIPEA as a base in DMF.

Entry 20: Ac-FKACGKGCA - NH₂ + HEXAFLUOROBENZENE in TFE/DIPEA

Figure SI20. LC/MS traces at λ=220 nm of crude reaction of peptide **pep4** with hexafluorobenzene when using DIPEA as a base in TFE.
Entry 21: Ac-FKACGKGCA - NH₂ + PENTAFLUOROPYRIDINE in DMF/DIPEA

Figure SI21. LC/MS traces at λ=220 nm of crude reaction of peptide pep4 with pentafluoropyridine when using DIPEA as a base in DMF.

Entry 22: Ac-FKACGKGCA - NH₂ + PENTAFLUOROPYRIDINE in TFE/DIPEA

Figure SI22. LC/MS traces at λ=220 nm of crude reaction of peptide pep4 with pentafluoropyridine when using DIPEA as a base in TFE.

Electronic Supporting Information [17]
Isolation and characterization of compounds 4-14

General methods:

Products from large-scale reactions were purified and isolated by semi-preparative reverse phase HPLC performed on a Discovery Bio wide pore C₁₈-5 column from Supelco (5 μm, 25 cm × 10 mm), using a Pelkin-Elmer 200 LC pump coupled to a Waters 486 tuneable absorbance detector set at $\lambda=220$ nm. A gradient with eluent A (95:5:0.1% H₂O:ACN:TFA) and eluent B (5:95:0.1% H₂O:ACN:TFA) was applied, where solvent B was firstly rose linearly from 0 to 100% during $t=60$ min and finally maintained isocratically for 5 min at a flow rate of 2 mL/min. Purified pooled fractions were then freeze-dried and the identity of the different compounds verified by LC/MS. The desired pure compounds were then further characterised by 19F NMR (2 mg/mL in H₂O/CD₃CN 50:50, unless otherwise stated), high resolution LC/MS-QToF and ion directed tandem mass spectrometry (MS/MS), allowing to obtain the characteristic rupture profile for each product. In MS/MS fragmentation analysis we have made use of the accepted nomenclature for fragment ions firstly proposed by Roepstorff and Fohlman (P. Roepstorff and J. Fohlman, *Biol. Mass Spectrom*. 1984, 11, 601–601.), and subsequently modified by Johnson et al. (R. S. Johnson, S. A. Martin, K. Biemann J. T. Stults and J. T. Watson, *Anal. Chem.*, 1987, 59, 2621–2625). Note that, in peptides and proteins, ions arising from fragmentation series γ or b are expected to be predominant.
Product 4.

Figure S123. Structure, high resolution QToF-LC/MS trace at λ=280 nm and composition of isolated compound 4.

Figure S124. 19F NMR spectrum of compound 4 as recorded in D$_2$O/MeCN 1:1 at room temperature.
Product 5.

QToF LC/MS: Calculated \(m/z \): 1230.27, observed \(m/z \): 1231.28 \([M+H]^+\). Retention time: 3.442 min. Elemental composition: C\(_{47}\)H\(_{46}\)F\(_{12}\)N\(_{12}\)O\(_{10}\)S\(_{2}\).

QToF-MS/MS: Calculated \(m/z \): 1103.18 \([b7+H]^+\), 1032.81 \([b6+H]^+\), 780.14 \([b5+H]^+\), 722.11 \([b4+H]^+\), 665.09 \([b3+H]^+\), 608.07 \([b2+H]^+\), 356.07 \([b1+H]^+\), 495.15 \([z4+H]^+\) Da.

Observed \(m/z \): 1103.22 \([b7+H]^+\), 1032.18 \([b6+H]^+\), 780.17 \([b5+H]^+\), 722.14 \([b4+H]^+\), 665.12 \([b3+H]^+\), 608.13 \([b2+H]^+\), 355.08 \([b1+H]^+\), 495.14 \([z4+H]^+\) Da.

\(^{19}\)F NMR (376 MHz, DMSO-\(d_6\)) \(\delta \) -91.20 (m, 2F), -93.42 (m, 4F), -137.49 (m, 4F), -155.63 (m, 2F).

Figure S125. Structure, high resolution QToF-LC/MS trace at \(\lambda = 220 \) nm and composition of isolated compound 5.
Figure SI26. MS/MS analysis of compound 5 showing its characteristic rupture pattern and the assignation of the main ions observed.

Figure SI27. 19F NMR spectrum of compound 5 as recorded in DMSO-d$_6$ at room temperature.
Product 6.

QToF LC/MS: Calculated \(m/z \): 900.34, observed \(m/z \): 901.34 [M+H]+. Retention time: 2.375 min. Elemental composition: C\(_{37}\)H\(_{48}\)F\(_4\)N\(_{10}\)O\(_{12}\).

QToF-MS/MS: Calculated \(m/z \): 771.24 [b\(_7\)+H]+, 700.20 [b\(_6\)+H]+, 613.17 [b\(_5\)+H]+, 499.12 [b\(_3\)+H]+, 442.35 [b\(_2\)+H]+, 355.07 [b\(_1\)+H]+, 530.26 [z\(_7\)+H]+, 443.23 [z\(_6\)+H]+ Da.

Observed \(m/z \): 771.27 [b\(_7\)+H]+, 700.24 [b\(_6\)+H]+, 613.19 [b\(_5\)+H]+, 449.10 [b\(_3\)+H]+, 442.08 [b\(_2\)+H]+, 355.11 [b\(_1\)+H]+, 530.26 [z\(_7\)+H]+, 442.08 [z\(_6\)+H]+ Da.

\(^{19}\)F NMR (376 MHz, H\(_2\)O/MeOD 1:1) \(\delta \) -91.32 (m, 2F), -155.98 (m, 2F).

Figure S128. Structure, high resolution QToF-LC/MS trace at \(\lambda = 220 \) nm and composition of isolated compound 6.
Figure SI29. MS/MS analysis of compound 6 showing its characteristic rupture pattern and the assignment of the main ions observed.

Figure SI30. 19F NMR spectrum of compound 6 as recorded in H$_2$O/MeOD 1:1 at room temperature.
Product 7.

QToF LC/MS: Calculated m/z: 1280.44, observed m/z: 1281.45 [M+H]$^+$. Retention time: 3.492 min. Elemental composition: C$_{53}$ H$_{60}$ F$_{12}$ N$_{14}$ O$_{10}$.

QToF-MS/MS:

Calculated m/z: 1152.34 [b7+H]$^+$, 1081.30 [b6+H]$^+$, 804.22 [b5+H]$^+$, 691.2337 [b3+H]$^+$, 747.20 [b4+H]$^+$, 911.36 [z7+H]$^+$, 634.28 [z6+H]$^+$, 520.23 [z4+H]$^+$ Da.

19F NMR (376 MHz, H$_2$O/MeOD 1:1) δ -91.66 (m, 2F), -98.17 (m, 4F), -156.29 (m, 4F), -165.54 (m, 2F).

Figure SI31. Structure, high resolution QToF-LC/MS trace at $\lambda=220$ nm and composition of isolated compound 7.
Figure SI32. MS/MS analysis of compound 7 showing its characteristic rupture pattern and the assignation of the main ions observed.

Figure SI33. 19F NMR spectrum of compound 7 as recorded in H$_2$O/MeOD 1:1 at room temperature.
Product 8.

\[
\text{O} \quad \text{N} \quad \text{H} \quad \text{N} \\
\text{O} \quad \text{O} \quad \text{O} \quad \text{N} \quad \text{H} \\
\text{O} \quad \text{N} \quad \text{H} \quad \text{N} \quad \text{O} \\
\text{S} \quad \text{N} \quad \text{F} \quad \text{F} \quad \text{F} \\
\text{F} \quad \text{F} \quad \text{F} \quad \text{F} \quad \text{F} \\
\text{OH}
\]

QToF LC/MS: Calculated \(m/z \): 1081.28, observed \(m/z \): 1082.19 \([\text{M+H}]^+\). Retention time: 3.017 min. Elemental composition: \(\text{C}_{42}\text{H}_{47}\text{F}_{8}\text{N}_{11}\text{O}_{10}\text{S}_{2} \).

QToF-MS/MS:

Calculated \(m/z \): 953.18 \([\text{b7+H}]^+\), 882.14 \([\text{b6+H}]^+\), 630.56 \([\text{b5+H}]^+\), 573.51 \([\text{b4+H}]^+\), 516.46 \([\text{b3+H}]^+\) Da.

Observed \(m/z \): 954.22 \([\text{b7+H}]^+\), 883.18 \([\text{b6+H}]^+\), 630.16 \([\text{b5+H}]^+\), 573.16 \([\text{b4+H}]^+\), 517.06 Da.

\(^{19}\text{F} \text{NMR (376 MHz, H}_2\text{O/ MeCN-d}_3 \text{ 1:1)} \delta -94.02 (\text{m, 2F}), -94.16 (\text{m, 2F}), -138.01 (\text{m, 2F}), -138.32 (\text{m, 2F}).

Figure SI34. Structure, high resolution QToF-LC/MS trace and composition of isolated compound 8.
Figure S135. MS/MS analysis of compound 8 showing its characteristic rupture pattern and the assignation of the main ions observed.

Figure S136. 19F NMR spectrum of compound 8 as recorded in H2O/ MeCN-d3 1:1 at room temperature.
Product 9. (Mixture of regioisomers)

QToF LC/MS: Calculated m/z: 932.96, observed m/z: 989.36 [2M+TFA+H]^2+. Retention time: 2.842 min. Elemental composition: C_{37}H_{48}F_{4}N_{10}O_{10}S_{2}.

QToF-MS/MS:

^{19}F NMR (376 MHz, H_{2}O/ MeCN-d_{3} 1:1) δ -94.05 (m, 2F), -94.18 (m, 2F), -138.01 (m, 2F), -138.31 (m, 2F).

Figure SI37. Structure, high resolution QToF-LC/MS trace at λ=220 nm and composition of isolated compound 9.
Figure SI38. MS/MS analysis of compound 9 showing its characteristic rupture pattern and the assignment of the main ions observed.

Figure SI39. 19F NMR spectrum of compound 9 as recorded in H$_2$O/ MeCN-d_3 1:1 at room temperature.
Product 10. (Mixture of regioisomers)

QToF LC/MS: Calculated m/z: 1081.28, observed m/z: 1138.35 [2M+TFA+2H$^+$]$^{2+}$.
Retention time: 3.300 min. Elemental composition: C$_{42}$H$_{47}$F$_8$N$_{11}$O$_{10}$S$_2$.

QToF-MS/MS:

19F NMR (376 MHz, H$_2$O/ MeCN-d_3 1:1) δ -91.57 (m, 2F), -93.40 (m, 2F), -137.69 (m, 2F), -156.12 (m, 2F).

Figure S140. Structure, high resolution QToF-LC/MS trace at $\lambda=220$ nm and composition of isolated compound 10.
Figure S141. MS/MS analysis of compound 10 showing its characteristic rupture pattern and the assignment of the main ions observed.

Figure S142. 19F NMR spectrum of compound 10 as recorded in H$_2$O/ MeCN-d_3 1:1 at room temperature.

Electronic Supporting Information [31]
Product 11.

QToF LC/MS: Calculated m/z: 1070.41, observed m/z: 1071.41 [M+H]⁺, 536.39 [M+2H]²⁺. Retention time: 1.875 min. Elemental composition: C₄₅ H₆₂ F₄ N₁₂ O₁₀ S₂.

QToF-MS/MS:
Calculated m/z: 881.32 [y₈+H]⁺, 753.23 [y₇+H]⁺, 536.22 [M+2H]²⁺, 492.67 [b₈+2H]²⁺, 441.16 [y₈+2H]²⁺ Da.

¹⁹F NMR (376 MHz, H₂O/ MeCN-d₃ 1:1) δ -134.53 (m, 4F).
Figure SI43. Structure, high resolution QToF-LC/MS trace at \(\lambda=220\) nm and composition of isolated compound 11.

Figure SI44. MS/MS analysis of compound 11 showing its characteristic rupture pattern and the assignation of the main ions observed.
Figure SI45. 19F NMR spectrum of compound 11 as recorded in H$_2$O/ MeCN-d_3 1:1 at room temperature.

Product 12.

![Chemical structure of Product 12](image)

QToF LC/MS: Calculated m/z: 1520.39, observed m/z: 1521.41 [M+H]$^+$. Retention time: 4.033 min. Elemental composition: C$_{59}$H$_{60}$F$_{16}$N$_{16}$O$_{10}$S$_2$.

QToF MS/MS:

Calculated m/z: 753.18 [M-NH$_2$+2H]$^{2+}$, 717.66 [b8+2H]$^{2+}$ Da.

Observed 754.18 [M-NH$_2$+2H]$^{2+}$, 718.15 [b8+2H]$^{2+}$ Da.

19F NMR (376 MHz, H$_2$O/ MeCN-d_3 1:1) δ -93.99 (m, 4F), -98.06 (m, 4F), -138.14 (m, 4F), -165.38 (m, 4F).
Figure SI46. Structure, high resolution QToF-LC/MS trace at $\lambda=220$ nm and composition of isolated compound 12.

Figure SI47. MS/MS analysis of compound 12 showing its characteristic rupture pattern and the assignation of the main ions observed.
Figure S148. 19F NMR spectrum of compound 12 as recorded in H$_2$O/ MeCN-d$_3$ 1:1 at room temperature.

Product 13.

![Chemical structure of Product 13](image)

QToF LC/MS: Calculated m/z: 1222.41, observed m/z: 1223.41 [M+H]$^+$, 612.20 [M+2H]$^{2+}$. Retention time: 2.200 min. Elemental composition: C$_{49}$ H$_{62}$ F$_8$ N$_{14}$ O$_{10}$ S$_2$.

QToF-MS/MS:

Calculated m/z: 1135.35 [b8+H]$^+$, 1033.32 [y8+H]$^+$, 905.23 [y7+H]$^+$, 834.19 [y6+H]$^+$, 612.05 [M+2H]$^{2+}$, 518.16 [y8+2H]$^+$, 389.22 [b3+H]$^+$ Da.

19F NMR (376 MHz, H$_2$O/ MeCN-d$_3$ 1:1) δ -94.01 (m, 4F), -137.98 (m, 4F).
Figure S149. Structure, high resolution QToF-LC/MS trace at $\lambda=220$ nm and composition of isolated compound 13.

Figure S150. MS/MS analysis of compound 13 showing its characteristic rupture pattern and the assignation of the main ions observed.
Figure SI51. 19F NMR spectrum of compound 13 as recorded in H$_2$O/ MeCN-d_3 1:1 at room temperature.

Product 14. (Mixture of regioisomers)

QToF LC/MS: Calculated m/z: 1073.42, observed m/z: 1130.49 [2M+TFA+H]$^{2+}$. Retention time: 2.167 min. Elemental composition: C$_{44}$ H$_{63}$ F$_4$ N$_{13}$ O$_{10}$ S$_2$.

QToF-MS/MS:

19F NMR (376 MHz, H$_2$O/ MeCN-d_3 1:1) δ -93.39 (m, 2F), -138.12 (m, 2F).
Figure S152. Structure, high resolution QToF-LC/MS trace at \(\lambda = 220 \) nm and composition of isolated compound 14.

Figure S153. MS/MS analysis of compound 14 showing its characteristic rupture pattern and the assignation of the main ions observed.
Figure SI54. 19F NMR spectrum of compound 14 as recorded in H$_2$O/ MeCN-d_3 1:1 at room temperature.