Electronic Supplementary Information for

Zwitterionic indenylammonium with carbon-centred reactivity toward reversible CO$_2$ binding and catalytic reduction

Yanxin Yang, Linfan Yan, Qinyu Xie, Qiuming Liang and Datong Song*

Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada

E-mail: dsong@chem.utoronto.ca
Table of Contents

1. 1H and 13C NMR spectra of 1
 page S3
2. 1H and 13C NMR spectra of 2
 page S4
3. 1H and 13C NMR spectra of 3
 page S5
4. 1H and 13C NMR spectra of 4
 page S6-S7
5. Additional information of 5
 page S8-S9
6. Spectra related to the catalytic hydroboration of CO$_2$
 page S10-S16
Figure S1. 1H NMR spectrum of 1 in CDCl$_3$.

Figure S2. 13C NMR spectrum of 1 in CDCl$_3$.
Figure S3. 1H NMR spectrum of 2 in CDCl$_3$

Figure S4. 13C NMR spectrum of 2 in CDCl$_3$
Figure S5. 1H NMR spectrum of 3 in CDCl$_3$.

Figure S6. 13C NMR spectrum of 3 in CDCl$_3$.

\[
\text{CH}_3\text{N(CH}_2\text{CH}_3)_2\text{BF}_4^-
\]
Figure S7. 1H NMR spectrum of 4 in CDCl$_3$.

Figure S8. 13C NMR spectrum of 4 in CDCl$_3$.

\[\text{CH}_3\text{N(CH}_2\text{CH}_3)_2 \]
Figure S9. 1H NMR spectrum of 4 in DMSO-d$_6$
Figure S10. 1H NMR spectrum of 5 in DMSO-d$_6$. The peak at 9.98 ppm in the 1H NMR spectrum corresponds to a carboxylic acid.

Figure S11. 13C NMR spectrum of 5 in DMSO-d$_6$. The 13C NMR spectrum confirms the formation of a carboxylic acid species with a new peak at 166.63 ppm.
Figure S12. IR spectrum of 5 in nujol.

Figure S13. The hydrogen bonded pair in the crystal lattice of 5. The intermolecular O1–O2 distance is ~2.6 Å.

Table S1. Selected crystallographic data of 5:

<table>
<thead>
<tr>
<th></th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C_{15}H_{19}NO_{2}·0.5CH_{2}Cl_{2}</td>
</tr>
<tr>
<td>FW</td>
<td>287.77</td>
</tr>
<tr>
<td>T (K)</td>
<td>150(2)</td>
</tr>
<tr>
<td>space group</td>
<td>P2_{1}/n</td>
</tr>
<tr>
<td>a (Å)</td>
<td>7.8390(9)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>10.837(1)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>17.382(2)</td>
</tr>
<tr>
<td>α (deg)</td>
<td>90</td>
</tr>
<tr>
<td>β (deg)</td>
<td>94.666(5)</td>
</tr>
<tr>
<td>γ (deg)</td>
<td>90</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>1471.7(3)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>D_{0} (g·cm⁻³)</td>
<td>1.299</td>
</tr>
<tr>
<td>μ (mm⁻¹)</td>
<td>0.259</td>
</tr>
<tr>
<td>no. of refln collected</td>
<td>12831</td>
</tr>
<tr>
<td>no. of indept refln</td>
<td>3347</td>
</tr>
<tr>
<td>GOF on F²</td>
<td>1.012</td>
</tr>
<tr>
<td>R (I > 2σ(I))</td>
<td>R₁ = 0.0664</td>
</tr>
<tr>
<td></td>
<td>wR₂ = 0.1285</td>
</tr>
<tr>
<td>R (all data)</td>
<td>R₁ = 0.1588</td>
</tr>
<tr>
<td></td>
<td>wR₂ = 0.1635</td>
</tr>
</tbody>
</table>
\[\text{CO}_2 + \text{CH}_3(\text{OBBN})_2 + \text{CH}_3\text{OBNN} + \text{O(BBN)}_2 \]

\[\text{TON} = 32 \quad 39.5 \]

Figure S14. 1H NMR spectrum of the final reaction mixture above.

Figure S15. 1B NMR spectrum of the final reaction mixture above.
Figure S16. 1H NMR spectrum of the final reaction mixture above

Figure S17. 11B NMR spectrum of the final reaction mixture above
\[4 + 100 \text{BH}_2\text{SMe}_2 \xrightarrow{\text{CO}_2} \text{CDCl}_3 \rightarrow (\text{CH}_2\text{OBO})_3 \]

25 °C, 12 h

TON = 109

Figure S18. 1H NMR spectrum of the final reaction mixture above

Figure S19. 11B NMR spectrum of the final reaction mixture above
4 + 100 BH₂·SMe₂ → \(\text{CO}_2 \text{CDCl}_3 \) \(\text{70 °C, 12 h} \) (CH₃OBO)₃ TON = 72.7

Figure S20. \(^1\text{H} \) NMR spectrum of the final reaction mixture above

Figure S21. \(^{11}\text{B} \) NMR spectrum of the final reaction mixture above
4 + 100 BH₃·SMe₂ → 2.5 atm CO₂
CDC₃ → (CH₂OBO)₃
25 °C, 10 h

Figure S22. ¹H NMR spectrum of the final reaction mixture above

Figure S23. ¹B NMR spectrum of the final reaction mixture above
4 + 100 BH₃·SMe₂ → (CH₃OBO)₃
CDCl₃
5 atm CO₂
25 °C, 10 h
TON = 269

Figure S24. ¹H NMR spectrum of the final reaction mixture above

Figure S25. ¹¹B NMR spectrum of the final reaction mixture above
Figure S26. 1H NMR spectrum of the final reaction mixture above

Figure S27. 11B NMR spectrum of the final reaction mixture above