Electronic Supplementary Information for Copper/Iron-Catalyzed C–P Cross-Coupling of styrenes with H-Phosphine Oxides: A Facile and Selective Synthesis of Alkenylphosphine Oxides and β-Ketophosphonates

Jian Gu, Chun Cai

1. General information
2. General Procedure
3. Characterization Data
4. NMR spectra
1. General Information

All chemical reagents are obtained from commercial suppliers and used without further purification. All known compounds are characterized by 1H NMR, 13C NMR, and compared with previously reported data. Analytical thin-layer chromatography are performed on glass plates precoated with silica gel impregnated with a fluorescent indicator (254 nm), and the plates are visualized by exposure to ultraviolet light. Mass spectra are taken on a Thermo Scientific ISQ LT GC-MS instrument in the electron ionization (EI) mode. 1H NMR, 13C NMR and 31P NMR spectra are recorded on an AVANCE 500 Bruker spectrometer operating at 500 MHz, 125 MHz and 202 MHz in CDCl$_3$, respectively, and chemical shifts are reported in ppm. High-resolution mass spectra data were obtained on Agilent mass spectrometer using ESI-TOF (electrospray ionization-time of flight).

2. General Procedure

General Procedure for the Synthesis of alkenylphosphine oxides and β-Ketophosphonates from Alkenyls and H-Phosphonates: A mixture of alkenyls (0.5 mmol), H-phosphonates (2.0 mmol), CuCl (0.05 mmol), FeCl$_3$ (0.1 mmol), DTBP (1.0 mmol) and Et$_3$N (0.5 mmol) in DMSO (2.0 mL) under Ar was stirred at 110°C or 90°C for 15 h. After the completion of the reaction, the mixture was cooled to 25°C and then EtOAc and H$_2$O were added to it. The organic layer was separated and washed with brine, dried over Na$_2$SO$_4$. The volatiles were removed under vacuum to afford the crude product, and analyzed by GC. The crude product was purified by column chromatography on silica gel and eluted with EtOAc/hexanes (25/75) to afford the desired pure product.

3. Characterization Data

(E)-diethyl styrylphosphonate 3aa$^{[1]}$, yellow oil. 1H NMR (500 MHz, CDCl$_3$) δ 7.54 – 7.46 (m, 3H), 7.37 (dd, $J = 5.0$, 1.7 Hz, 3H), 6.25 (t, $J = 17.6$ Hz, 1H), 4.17 – 4.07 (m, 4H), 1.35 (t, $J = 7.1$ Hz, 6H). 13C NMR (125 MHz, CDCl$_3$) δ 148.92 (s), 135.08 (s), 130.37 (s), 127.83 (s), 114.83 (s), 113.31 (s), 62.25 (s), 16.50 (s). MS (EI) m/z: 240 [M$^+$].

(E)-diethyl 4-methylstyrylphosphonate 3ba$^{[1]}$, yellow oil. 1H NMR (500 MHz, CDCl$_3$) δ 7.45 (dd, $J = 22.6$, 17.5 Hz, 1H), 7.37 (d, $J = 8.0$ Hz, 2H), 7.16 (d, $J = 7.9$ Hz, 2H), 6.17 (t, $J = 17.7$ Hz, 1H), 4.15 – 4.06 (m, 4H), 2.34 (s, 3H), 1.33 (t, $J = 7.1$ Hz, 6H). 13C NMR (125 MHz, CDCl$_3$) δ 148.88
(E)-diethyl 2,4,6-trimethylstyrlylphosphonate 3ca\(^1\), yellow oil. \(^{1}\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.65 (dd, \(J = 23.8, 17.9\) Hz, 1H), 6.94 (s, 2H), 5.91 (dd, \(J = 20.6, 17.9\) Hz, 1H), 4.25 – 4.17 (m, 4H), 2.34 (d, \(J = 16.4\) Hz, 9H), 1.42 (t, \(J = 7.1\) Hz, 6H). \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 147.71 (s), 138.28 (s), 136.03 (s), 129.21 (s), 120.91 (s), 119.44 (s), 70.64 (s), 61.95 (s), 21.01 (s), 16.58 (s).

\[
\begin{align*}
\text{3ca}
\end{align*}
\]

(E)-diethyl 4-methoxystyrlylphosphonate 3da\(^1\), yellow oil. \(^{1}\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.48 (q, \(J = 15.9\) Hz, 3H), 6.93 (d, \(J = 8.6\) Hz, 2H), 6.12 (t, \(J = 17.6\) Hz, 1H), 4.20 – 4.11 (m, 4H), 3.86 (s, 3H), 1.38 (t, \(J = 7.1\) Hz, 6H). \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 161.43 (s), 148.60 (s), 129.45 (s), 127.67 (s), 114.36 (s), 111.71 (s), 110.18 (s), 61.86 (s), 55.49 (s), 16.50 (s).

\[
\begin{align*}
\text{3da}
\end{align*}
\]

(E)-diethyl 4-tert-butylstyrlylphosphonate 3ea, yellow oil. \(^{1}\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.55 – 7.47 (m, 1H), 7.47 – 7.44 (m, 2H), 7.42 (d, \(J = 8.4\) Hz, 2H), 6.22 (t, \(J = 17.7\) Hz, 1H), 4.18 – 4.08 (m, 4H), 1.36 (t, \(J = 7.1\) Hz, 6H), 1.33 (s, 9H). \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 153.72 (s), 148.81 (s), 127.67 (s), 125.93 (s), 125.58 (s), 113.68 (s), 112.15 (s), 61.91 (s), 35.28 (s), 31.28 (s), 16.49 (s). \(^{31}\)P NMR (202 MHz, CDCl\(_3\)) \(\delta\) 20.21 (s). HRMS (ESI) Calcd. For 319.1439, \(C_{16}H_{25}O_{3}P\) [M-Na]\(^+\), found 319.1435.

\[
\begin{align*}
\text{3ea}
\end{align*}
\]

(E)-4-(2-(diethoxyphosphoryl)vinyl)phenyl acetate 3fa, yellow oil. \(^{1}\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.53 (d, \(J = 8.4\) Hz, 2H), 7.52 – 7.42 (m, 1H), 7.13 (d, \(J = 8.5\) Hz, 2H), 6.22 (t, \(J = 17.4\) Hz, 1H), 4.14 (tdt, \(J = 10.1, 6.8, 3.2\) Hz, 4H), 2.32 (s, 3H), 1.36 (t, \(J = 7.1\) Hz, 6H). \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 169.29 (s), 152.18 (s), 147.83 (s), 128.99 (s), 122.24 (s), 114.99 (s), 113.46 (s), 62.06 (s), 21.25 (s), 16.54 (s). \(^{31}\)P NMR (202 MHz, CDCl\(_3\)) \(\delta\) 19.40 (s). HRMS (ESI) Calcd. For 321.0868, \(C_{14}H_{19}O_{3}P\) [M-Na]\(^+\), found 321.0861.

\[
\begin{align*}
\text{3fa}
\end{align*}
\]
(E)-diethyl 4-fluorostyrylphosphonate 3ga,[2] yellow oil. 1H NMR (500 MHz, CDCl$_3$) δ 7.58 – 7.46 (m, 3H), 7.12 (t, $J = 8.6$ Hz, 2H), 6.22 (t, $J = 17.4$ Hz, 1H), 4.23 – 4.13 (m, 4H), 1.40 (t, $J = 7.1$ Hz, 6H). 13C NMR (125 MHz, CDCl$_3$) δ 164.99 (s), 162.99 (s), 147.84 (s), 129.74 (s), 116.19 (s), 114.64 (s), 113.11 (s), 62.00 (s), 16.51 (s).

(E)-diethyl 4-chlorostyrylphosphonate 3ha,[1], yellow oil. 1H NMR (500 MHz, CDCl$_3$) δ 7.46 (dt, $J = 14.3$, 11.7 Hz, 3H), 7.37 (d, $J = 8.5$ Hz, 2H), 6.24 (t, $J = 17.3$ Hz, 1H), 4.20 – 4.10 (m, 4H), 1.37 (t, $J = 7.1$ Hz, 6H). 13C NMR (125 MHz, CDCl$_3$) δ 147.37 (s), 136.29 (s), 129.25 (s), 129.02 (s), 115.63 (s), 114.10 (s), 62.10 (s), 16.51 (s).

(E)-diethyl 4-bromostyrylphosphonate 3ia,[1], yellow oil. 1H NMR (500 MHz, CDCl$_3$) δ 7.52 (d, $J = 8.4$ Hz, 2H), 7.43 (dd, $J = 22.5$, 17.5 Hz, 1H), 7.36 (d, $J = 8.4$ Hz, 2H), 6.25 (t, $J = 17.3$ Hz, 1H), 4.20 – 4.05 (m, 4H), 1.36 (t, $J = 7.1$ Hz, 6H). 13C NMR (125 MHz, CDCl$_3$) δ 147.46 (s), 132.22 (s), 129.24 (s), 124.62 (s), 115.77 (s), 114.10 (s), 112.83 (s), 16.48 (s).

(E)-diethyl 2-phenylprop-1-enylphosphonate 3ja,[3] yellow oil. 1H NMR (500 MHz, CDCl$_3$) δ 7.47 (dd, $J = 6.6$, 2.9 Hz, 2H), 7.39 – 7.34 (m, 3H), 5.91 (d, $J = 16.6$ Hz, 1H), 4.13 (p, $J = 7.3$ Hz, 4H), 2.51 (d, $J = 3.2$ Hz, 3H), 1.36 (t, $J = 7.1$ Hz, 6H). 13C NMR (125 MHz, CDCl$_3$) δ 158.30 (s), 129.26 (s), 128.59 (s), 126.08 (s), 124.87 (s), 114.34 (s), 112.83 (s), 16.48 (s).

(E)-diethyl 2-(pyridin-2-yl)vinylphosphonate 3ka, white solid. 1H NMR (500 MHz, CDCl$_3$) δ 8.65 (d, $J = 4.5$ Hz, 1H), 7.73 (t, $J = 7.6$ Hz, 1H), 7.54 (dd, $J = 21.8$, 17.1 Hz, 1H), 7.39 (d, $J = 7.7$ Hz, 1H), 7.29 (d, $J = 4.9$ Hz, 1H), 6.95 – 6.84 (m, 1H), 4.20 – 4.12 (m, 4H), 1.37 (t, $J = 7.1$ Hz, 6H). 13C NMR
(125 MHz, CDCl$_3$) δ 152.96 (s), 150.16 (s), 147.44 (s), 137.05 (s), 124.46 (s), 119.60 (s), 118.10 (s), 62.14 (s), 16.49 (s). 31P NMR (202 MHz, CDCl$_3$) δ 18.88 (s).

HRMS (ESI) Calcd. For C$_{11}$H$_{16}$NO$_3$P [M-Na]$^+$, found 264.0762.

(E)-diethyl 2-(thiophen-2-yl)vinylphosphonate 3la[3], yellow oil. 1H NMR (500 MHz, CDCl$_3$) δ 7.55 (dd, $J = 21.9$, 17.2 Hz, 1H), 7.32 (d, $J = 5.0$ Hz, 1H), 7.17 (d, $J = 3.4$ Hz, 1H), 7.00 (dd, $J = 4.8$, 3.8 Hz, 1H), 5.96 (t, $J = 17.0$ Hz, 1H), 4.12 – 4.04 (m, 4H), 1.31 (t, $J = 7.1$ Hz, 6H).

13C NMR (125 MHz, CDCl$_3$) δ 141.38 (s), 140.96 (d, $J = 88.3$ Hz), 140.40 (s), 130.37 (s), 128.31 (s), 128.12 (s), 113.26 (s), 111.72 (s), 62.00 (s), 16.49 (s).

(E)-diisopropyl styrylphosphonate 3ab[1], yellow oil. 1H NMR (500 MHz, CDCl$_3$) δ 7.54 – 7.48 (m, 3H), 7.38 (dd, $J = 5.1$, 2.0 Hz, 3H), 6.27 (t, $J = 17.5$ Hz, 1H), 4.72 (qd, $J = 12.4$, 6.2 Hz, 2H), 1.35 (dd, $J = 24.3$, 6.2 Hz, 12H).

13C NMR (125 MHz, CDCl$_3$) δ 147.95 (s), 128.98 (t, $J = 150.2$ Hz), 115.78 (d, $J = 191.2$ Hz), 70.67 (s), 24.20 (s).

(E)-dibutyl styrylphosphonate 3ac[4], yellow oil. 1H NMR (500 MHz, CDCl$_3$) δ 7.57 – 7.49 (m, 3H), 7.41 – 7.39 (m, 1H), 7.30 (d, $J = 4.5$ Hz, 1H), 6.23 (t, $J = 17.7$ Hz, 1H), 3.77 (t, $J = 10.1$, 6.7 Hz, 2H), 1.71 – 1.66 (m, 4H), 1.48 – 1.37 (m, 4H), 0.94 (t, $J = 7.4$ Hz, 6H).

13C NMR (125 MHz, CDCl$_3$) δ 148.84 (s), 130.33 (s), 129.31 (s), 128.98 (s), 127.83 (s), 113.29 (s), 65.75 (s), 32.67 (s), 18.89 (s), 13.73 (s).

(E)-dimethyl styrylphosphonate 3ad[5], yellow oil. 1H NMR (500 MHz, CDCl$_3$) δ 7.56 – 7.49 (m, 3H), 7.41 – 7.39 (m, 2H), 7.30 (d, $J = 4.5$ Hz, 1H), 6.23 (t, $J = 17.7$ Hz, 1H), 3.77 (t, $J = 10.6$ Hz, 6H).

13C NMR (125 MHz, CDCl$_3$) δ 130.55 (s), 129.03 (s), 127.89 (s), 127.47 (s), 113.28 (s), 111.52 (s), 52.61 (s).
(E)-diphenyl styrylphosphonate 3af[1], yellow oil. 1H NMR (500 MHz, CDCl\textsubscript{3}) \(\delta\) 7.85 – 7.78 (m, 4H), 7.59 (dt, \(J = 6.0, 4.7\) Hz, 4H), 7.57 – 7.51 (m, 5H), 7.44 (dd, \(J = 5.1, 1.9\) Hz, 3H), 6.90 (dd, \(J = 22.3, 17.4\) Hz, 1H). 13C NMR (125 MHz, CDCl\textsubscript{3}) \(\delta\) 147.73 (s), 132.02 (s), 131.54 (d, \(J = 9.3\) Hz), 130.25 (s), 129.00 (s), 128.77 (d, \(J = 11.7\) Hz), 127.92 (s), 119.78 (s), 118.95 (s).

Diethyl 2-oxo-2-phenylethylphosphonate 4aa[6], light yellow oil. 1H NMR (500 MHz, CDCl\textsubscript{3}) \(\delta\) 8.01 (d, \(J = 7.2\) Hz, 2H), 7.58 (t, \(J = 7.4\) Hz, 1H), 7.47 (t, \(J = 7.7\) Hz, 2H), 4.17 – 4.10 (m, 4H), 3.63 (d, \(J = 22.7\) Hz, 2H), 1.27 (t, \(J = 7.1\) Hz, 6H). 13C NMR (125 MHz, CDCl\textsubscript{3}) \(\delta\) 192.11 (s), 133.80 (s), 128.96 (d, \(J = 55.1\) Hz), 62.84 (s), 39.12 (s), 38.09 (s), 16.38 (s). MS (EI) \(m/z\): 256 [M+].

Diethyl 2-oxo-2-p-tolylethylphosphonate 4ba[6], light yellow oil. 1H NMR (500 MHz, CDCl\textsubscript{3}) \(\delta\) 7.84 (d, \(J = 8.2\) Hz, 2H), 7.20 (d, \(J = 7.9\) Hz, 2H), 4.10 – 4.03 (m, 4H), 3.53 (d, \(J = 22.7\) Hz, 2H), 2.35 (s, 3H), 1.21 (t, \(J = 7.1\) Hz, 6H). 13C NMR (125 MHz, CDCl\textsubscript{3}) \(\delta\) 191.63 (s), 144.80 (s), 134.21 (s), 129.38 (d, \(J = 11.6\) Hz), 62.73 (s), 39.02 (s), 37.99 (s), 21.64 (s), 16.37 (s).

Diethyl 2-mesityl-2-oxoethylphosphonate 4ca, yellow oil. 1H NMR (500 MHz, CDCl\textsubscript{3}) \(\delta\) 6.85 (s, 2H), 4.19 – 4.09 (m, 4H), 3.44 (d, \(J = 21.7\) Hz, 2H), 2.28 (s, 9H), 1.30 (t, \(J = 7.1\) Hz, 6H). 13C NMR (125 MHz, CDCl\textsubscript{3}) \(\delta\) 200.88 (s), 139.21 (s), 138.59 (s), 133.62 (s), 130.32 (s), 128.97 (s), 62.55 (s), 44.27 (s), 43.23 (s), 22.27 (s), 20.95 (d, \(J = 61.2\) Hz), 19.71 (s), 16.36 (s). 31P NMR (202 MHz, CDCl\textsubscript{3}) \(\delta\) 19.84 (s). HRMS (ESI) Calcd. For 321.1232, C\textsubscript{15}H\textsubscript{23}O\textsubscript{4}P [M-Na]+, found 321.1229.

Diethyl 2-(4-methoxyphenyl)-2-oxoethylphosphonate 4da[6], light yellow oil. 1H NMR (500 MHz, CDCl\textsubscript{3}) \(\delta\) 7.94 (d, \(J = 7.0\) Hz, 2H), 6.88 (d, \(J = 8.9\) Hz, 2H), 4.07 (p, \(J = 7.1\) Hz, 4H), 3.81 (s, 3H), 3.51 (d, \(J = 22.7\) Hz, 2H), 1.22 (t, \(J = 7.1\) Hz, 6H). 13C NMR (125 MHz, CDCl\textsubscript{3}) \(\delta\) 190.21 (s), 164.18 (s), 131.54 (s), 129.82 – 129.66 (m), 113.67 (s), 62.80 (s), 55.56 (s), 16.31 (s).
diethyl 2-(4-tert-butylphenyl)-2-oxoethylphosphonate 4ea\[6\], yellow oil. \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.96 (d, \(J = 8.5\) Hz, 2H), 7.49 (d, \(J = 8.5\) Hz, 2H), 4.18 – 4.11 (m, 4H), 3.62 (d, \(J = 22.7\) Hz, 2H), 1.35 (s, 9H), 1.29 (t, \(J = 7.1\) Hz, 6H). \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 191.62 (s), 134.23 (s), 129.17 (s), 125.69 (s), 62.72 (s), 39.02 (s), 37.99 (s), 32.35 (s), 31.35 (d, \(J = 49.7\) Hz), 16.34 (s). \(^{31}\)P NMR (202 MHz, CDCl\(_3\)) \(\delta\) 20.38 (s). HRMS (ESI) Calcd. For C\(_{16}\)H\(_{25}\)O\(_4\)P \([M-\text{Na}]^+\), found 335.1385.

4-(2-(diethoxyphosphoryl)acetyl)phenyl acetate 4fa, yellow oil. \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 8.05 (d, \(J = 8.6\) Hz, 2H), 7.21 (d, \(J = 8.6\) Hz, 2H), 4.17 – 4.10 (m, 4H), 3.60 (d, \(J = 22.7\) Hz, 2H), 2.32 (s, 3H), 1.28 (t, \(J = 7.1\) Hz, 6H). \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 190.82 (s), 168.83 (s), 154.95 (s), 134.20 (s), 130.89 (s), 121.93 (s), 62.92 (s), 39.21 (s), 38.18 (s), 21.27 (s), 16.38 (s). \(^{31}\)P NMR (202 MHz, CDCl\(_3\)) \(\delta\) 19.59 (s). HRMS (ESI) Calcd. For C\(_{14}\)H\(_{19}\)O\(_6\)P \([M-\text{Na}]^+\), found 337.0813.

diethyl 2-(4-fluorophenyl)-2-oxoethylphosphonate 4ga\[6\], brown oil. \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.99 (dd, \(J = 8.9, 5.4\) Hz, 2H), 7.08 (t, \(J = 8.6\) Hz, 2H), 4.11 – 4.03 (m, 4H), 3.53 (d, \(J = 22.8\) Hz, 2H), 1.22 (t, \(J = 7.1\) Hz, 6H). \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 190.46 (s), 133.09 (s), 132.01 (d, \(J = 9.0\) Hz), 115.99 (s), 115.81 (s), 62.89 (s), 39.28 (s), 38.25 (s), 16.41 (s).

Diethyl 2-(4-chlorophenyl)-2-oxoethylphosphonate 4ha\[6\], yellow green oil. \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.90 (d, \(J = 8.6\) Hz, 2H), 7.39 (d, \(J = 8.6\) Hz, 2H), 4.12 – 4.02 (m, 4H), 3.53 (d, \(J = 22.8\) Hz, 2H), 1.22 (t, \(J = 7.1\) Hz, 6H). \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 190.84 (s), 133.09 (s), 132.01 (d, \(J = 9.0\) Hz), 115.99 (s), 115.81 (s), 62.89 (s), 39.18 (s), 38.17 (s), 16.31 (s).

Diethyl 2-(4-bromophenyl)-2-oxoethylphosphonate 4ia\[6\], yellow oil. \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.82 (d, \(J = 8.7\) Hz, 2H), 7.55 (d, \(J = 8.7\) Hz, 2H), 4.10 – 4.04 (m, 4H), 3.53 (d, \(J = 22.8\) Hz,
2H), 1.22 (t, J = 7.1 Hz, 6H). 13C NMR (125 MHz, CDCl$_3$) δ 191.12 (s), 135.35 (s), 132.08 (s), 130.72 (s), 129.24 (s), 62.90 (s), 38.76 (d, J = 129.5 Hz), 16.40 (s).

4la

diethyl 2-oxo-2-(thiophen-2-yl)ethylphosphonate **4la**, yellow oil. 1H NMR (500 MHz, CDCl$_3$) δ 7.81 (d, J = 3.8 Hz, 1H), 7.68 (d, J = 4.9 Hz, 1H), 7.17 – 7.12 (m, 1H), 4.16 – 4.11 (m, 4H), 3.54 (d, J = 22.5 Hz, 2H), 1.28 (t, J = 7.1 Hz, 6H). 13C NMR (125 MHz, CDCl$_3$) δ 184.36 (s), 144.05 (s), 135.24 (s), 134.32 (s), 128.47 (s), 62.95 (s), 40.01 (s), 38.97 (s), 16.38 (s).

4ma
diethyl (1-oxo-1-phenylpropan-2-yl)phosphonate **4ma**, yellow oil. 1H NMR (500 MHz, CDCl$_3$) δ 8.05 – 7.98 (m, 2H), 7.59 (t, J = 7.4 Hz, 1H), 7.48 (t, J = 7.7 Hz, 2H), 4.21 (q, J = 7.0 Hz, 1H), 4.16 – 4.04 (m, 4H), 1.54 (dd, J = 18.0, 7.0 Hz, 3H), 1.25 (dt, J = 42.3, 7.1 Hz, 6H). 13C NMR (125 MHz, CDCl$_3$) δ 135.89 (s), 132.38 (s), 127.89 (s), 127.54 (s), 61.80 (s), 39.84 (s), 15.53 (s), 11.29 (s).

4ab
diisopropyl 2-oxo-2-phenylethylphosphonate **4ab**, light yellow oil. 1H NMR (500 MHz, CDCl$_3$) δ 8.03 (d, J = 8.1 Hz, 2H), 7.59 (t, J = 7.4 Hz, 1H), 7.48 (t, J = 7.7 Hz, 2H), 4.73 (dq, J = 12.9, 6.3 Hz, 2H), 3.60 (d, J = 22.9 Hz, 2H), 1.77 (d, J = 6.0, 3.9 Hz, 12H). 13C NMR (125 MHz, CDCl$_3$) δ 192.23 (s), 136.80 (s), 133.63 (s), 129.28 (s), 128.94 (d, J = 80.1 Hz), 71.60 (s), 40.36 (s), 39.32 (s), 24.08 (s).

4ac
dibutyl 2-oxo-2-phenylethylphosphonate **4ac**, yellow oil. 1H NMR (500 MHz, CDCl$_3$) δ 8.02 (d, J = 7.7 Hz, 2H), 7.59 (t, J = 7.3 Hz, 1H), 7.48 (t, J = 7.7 Hz, 2H), 4.13 – 4.02 (m, 4H), 3.64 (d, J = 22.8 Hz, 2H), 1.67 – 1.55 (m, 4H), 1.33 (dq, J = 14.8, 7.4 Hz, 4H), 0.89 (t, J = 7.4 Hz, 6H). 13C NMR (125 MHz, CDCl$_3$) δ 192.08 (s), 133.74 (s), 129.70 – 129.32 (m), 128.95 (d, J = 59.4 Hz), 66.45 (s), 39.32 (s), 37.98 (s), 32.48 (s), 18.74 (s), 13.67 (s).

4ad
dimethyl 2-oxo-2-phenylethylphosphonate **4ad**, colorless and transparent oil. 1H NMR (500 MHz, CDCl$_3$) δ 8.00 (d, J = 8.0 Hz, 2H), 7.60 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.7 Hz, 2H), 3.78 (d,
J = 11.2 Hz, 6H), 3.64 (d, J = 22.6 Hz, 2H). 13C NMR (125 MHz, CDCl₃) δ 191.90 (s), 136.54 (s), 133.94 (s), 128.98 (d, J = 33.7 Hz), 53.29 (s), 38.14 (s), 37.09 (s).

4. NMR Spectra of All Products

![NMR Spectra of All Products](image)

1H NMR 3aa
13C NMR 3ba

1H NMR 3ca
13C NMR 3ca

1H NMR 3da
13C NMR 3ea

31P NMR 3ea
1H NMR 3fa

13C NMR 3fa
13C NMR 3ka

31P NMR 3ka
1H NMR 3ac

13C NMR 3ac
1H NMR 3ad

13C NMR 3ad
1H NMR 3af

13C NMR 3af
1H NMR 4ba

13C NMR 4ba
31P NMR $4ca$

1H NMR $4da$
13C NMR 4da

1H NMR 4ca
1H NMR 4fa

13C NMR 4fa
$^{31}\text{P NMR 4fa}$

$^{1}\text{H NMR 4ga}$
$^{13}\text{C NMR 4ga}$

$^{1\text{H NMR 4ha}}$
13C NMR 4ha

1H NMR 4ia
13C NMR 4ia

1H NMR 4ia
13C NMR 4ab

1H NMR 4ac
13C NMR 4ac

1H NMR 4ad
13C NMR 4ad