Supporting Information

Palladium-catalyzed tandem addition/cyclization in aqueous medium:
synthesis of 2-arylindoles

Shuling Yu, Kun Hu, Julin Gong, Linjun Qi, Jianghe Zhu, Yetong Zhang, Tianxing Cheng* and Jiuxi Chen*

College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.

E-mail: juxichen@wzu.edu.cn; chengtx_wzu@163.com

Table of Contents

1. Copies of 1H and 13CNMR spectra of 3a-3x..S1

2. Copies of 1H and 13CNMR spectra of 4a-8b..S25
1. Copies of 1H and 13C NMR spectra of 3a-3x

Figure S1. 1H NMR of 3a (500 MHz, CDCl$_3$) and 13C NMR of 3a (125 MHz, CDCl$_3$).
Figure S2. 1H NMR of 3b (500 MHz, CDCl$_3$) and 13C NMR of 3b (125 MHz, CDCl$_3$).
Figure S3. 1H NMR of 3c (500 MHz, CDCl₃) and 13C NMR of 3c (125 MHz, CDCl₃).
Figure S4. 1H NMR of 3d (500 MHz, CDCl$_3$) and 13C NMR of 3d (125 MHz, CDCl$_3$).
Figure S5. 1H NMR of 3e (500 MHz, CDCl$_3$) and 13C NMR of 3e (125 MHz, CDCl$_3$).
Figure S6. 1H NMR of 3f (500 MHz, DMSO-d$_6$) and 13C NMR of 3f (125 MHz, DMSO-d$_6$).
Figure S7. 1H NMR of 3g (500 MHz, CDCl$_3$) and 13C NMR of 3g (125 MHz, CDCl$_3$)
Figure S8. 1H NMR of 3h (500 MHz, CDCl$_3$) and 13C NMR of 3h (125 MHz, CDCl$_3$).
Figure S9. 1H NMR of 3i (500 MHz, CDCl$_3$) and 13C NMR of 3i (125 MHz, CDCl$_3$).
Figure S10. 1H NMR of 3j (500 MHz, CDCl$_3$) and 13C NMR of 3j (125 MHz, CDCl$_3$).
Figure S11. 1H NMR of 3k (500 MHz, DMSO-d_6) and 13C NMR of 3k (125 MHz, DMSO-d_6).
Figure S12. 1H NMR of 3l (500 MHz, DMSO-d_6) and 13C NMR of 3l (125 MHz, DMSO-d_6).
Figure S13. 1H NMR of 3m (500 MHz, DMSO-d_6) and 13C NMR of 3m (125 MHz, DMSO-d_6).
Figure S14. \(^1\)H NMR of 3n (500 MHz, DMSO-\(d_6\)) and \(^{13}\)C NMR of 3n (125 MHz, DMSO-\(d_6\)).
Figure S15. 1H NMR of 3o (500 MHz, DMSO-d_6) and 13C NMR of 3o (125 MHz, DMSO-d_6)
Figure S16. 1H NMR of 3p (500 MHz, DMSO-d_6) and 13C NMR of 3p (125 MHz, DMSO-d_6).
Figure S17. 1H NMR of 3q (500 MHz, DMSO-d_6) and 13C NMR of 3q (125 MHz, DMSO-d_6).
Figure S18. 1H NMR of 3r (500 MHz, DMSO-d_6) and 13C NMR of 3r (125 MHz, DMSO-d_6).
Figure S19. 1H NMR of 3s (500 MHz, DMSO-d_6) and 13C NMR of 3s (125 MHz, DMSO-d_6).
Figure S20. 1H NMR of 3t (500 MHz, DMSO-d_6) and 13C NMR of 3t (125 MHz, DMSO-d_6)
Figure S21. 1H NMR of 3u (500 MHz, DMSO-d_6) and 13C NMR of 3u (125 MHz, DMSO-d_6)
Figure S22. 1H NMR of 3v (500 MHz, DMSO-d$_6$) and 13C NMR of 3v (125 MHz, DMSO-d$_6$)
Figure S23. 1H NMR of 3w (500 MHz, DMSO-d_6) and 13C NMR of 3w (125 MHz, DMSO-d_6)
Figure S24. 1H NMR of 3x (500 MHz, DMSO-d_6) and 13C NMR of 3x (125 MHz, DMSO-d_6)
2. Copies of 1H and 13C NMR spectra of 4a-8b

Figure S25. 1H NMR of 4a (500 MHz, CDCl$_3$)

Figure S26. 1H NMR of 5a (500 MHz, CDCl$_3$)
Figure S27. 1H NMR of 6a (500 MHz, CDCl$_3$) and 13C NMR of 6a (125 MHz, CDCl$_3$)
Figure S28. 1H NMR of 7a (500 MHz, DMSO-d_6) and 13C NMR of 7a (125 MHz, CDCl$_3$)
Figure S29. 1H NMR of 8b (500 MHz, DMSO-d_6) and 13C NMR of 8b (125 MHz, DMSO-d_6)