Supporting Information for

1,5-Electrocyclization of conjugated azomethine ylides derived from 3-formyl chromene and N-alkyl amino acids/esters

E. Pravardhan Reddy, a A. Sumankumar, b B. Sridhar, c Y. Hemasri, d Y. Jayaprakash Rao,* a,c and B. V. Subba Reddy* b

a Department of Chemistry, Osmania University, Hyderabad-500 007, India. b Centre for Semiochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India. c Laboratory of X-ray Crystallography, E-mail: basireddy @iict.res.in; yjpr_19@yahoo.com

Table of Contents

1. General Methods & Experimental Procedures.. S2
2. Characterization data of products... S3-14
3. NMR Spectra of products... S15-31
3. X-ray crystallography... S32
1. General Methods

All solvents were dried according to standard literature procedures. Unless otherwise noted, reactions were performed in flame-dried glassware under an atmosphere of dry argon. Dichloromethane was dried over Calcium hydride prior to use. 1H NMR spectra were recorded at 500 MHz, 300 MHz and 400 MHz and 13C NMR at 125 MHz, 100 MHz and 75MHz. For 1H NMR, tetramethylsilane (TMS) was used as internal standard ($\delta = 0$) and the values are reported as follows: chemical shift, multiplicity, integration (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublet), and the coupling constants in Hz. For 13C NMR, CDCl$_3$ ($\delta = 77.00$) was used as internal standard and spectra were obtained with complete proton decoupling. Low-resolution MS and HRMS data were obtained using ESI ionization. IR spectra were recorded on FT-IR spectrometer (KBr) and reported in reciprocal centimeters (cm$^{-1}$). Melting points were measured on micro melting point apparatus. Crude products were purified by column chromatography on silica gel of 60–120 or 100-200 mesh. Thin layer chromatography plates were visualized by exposure to ultraviolet light and/or by exposure to iodine vapours and/or by exposure to methanolic acidic solution of 2-napthol followed by heating (<1 min) on a hot plate (~250°C).

Experimental procedure

Preparation of 1-Benzyl-7-chloro-3-phenethylchromeno [3, 4-\textit{b}] pyrrol-4(3\textit{H})-one (3)

\[\begin{align*}
\text{R}^1 & = -\text{H, Cl, Br, OMe} \\
\text{R}^2 & = -\text{H, Ph, O-methoxy phenyl} \\
\text{R}^3 & = -\text{Me, Bn, CH}_2\text{-CH}_2\text{-Ph}
\end{align*} \]

A mixture of 2H-chromene-3-carbaldehyde 1 (1.1 equiv) and N-alkylated amino ester 2 (3.0 equiv) in xylene (5 mL) was stirred at 140 ºC for 6 h. The progress of the reaction was monitored by TLC. Up on completion, the solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (EtOAc/hexane) to give the pure product.
2. Characterization data of products

1-Benzyl-3-methylchromeno [3, 4-<i>b</i>] pyrrol-4(<i>3H</i>)-one (3a):

A mixture of 2-phenyl-2<i>H</i>-chromene-3-carbaldehyde 1 (1.1 equiv) and ethyl <i>N</i>-methylglycinate 2 (3.0 equiv) in xylene (5 mL) was stirred at 140 °C for 6 h. The progress of the reaction was monitored by TLC. Up on completion, the solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (1:9 of EtOAc/hexane) to give the pure product 3a.

![3a](image)

White solid, m.p.152-153°C; \(^1^H\) NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.75 (dd, \(J = 7.9, 1.4\) Hz, 1H), 7.39 (dd, \(J = 8.3, 1.1\) Hz, 1H), 7.35 – 7.29 (m, 3H), 7.26 – 7.23 (m, 3H), 7.20 – 7.15 (m, 1H), 6.73 (s, 1H), 4.24 (s, 2H), 4.06 (s, 3H); \(^1^C\) NMR (101 MHz, CDCl\(_3\)) \(\delta\) 155.4, 151.3, 139.3, 132.8, 128.7, 128.5, 127.1, 126.9, 126.5, 124.0, 123.5, 118.9, 117.7, 117.3, 117.2, 36.0, 32.7; IR (KBr): \(\nu_{\text{max}}\) 3449, 2925, 1652, 1489, 1208, 766 cm\(^{-1}\); MS (EI): m/z ([M+1]): 290; HRMS (EI): m/z calcd for C\(_{19}\)H\(_{15}\)NO\(_2\): 290.11028; found: 290.11035.

7-Chloro-1-(2-methoxybenzyl)-3-phenethylchromeno [3, 4-<i>b</i>] pyrrol-4(<i>3H</i>)-one (3b):-

A mixture of 6-chloro-2-(2-methoxyphenyl)-2<i>H</i>-chromene-3-carbaldehyde 1 (1.1 equiv) and methyl phenethylglycinate 2 (3.0 equiv) in xylene (5 mL) was stirred at 140 °C for 6 h. The progress of the reaction was monitored by TLC. Up on completion, the solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (3:7 of EtOAc/hexane) to give the pure product 3b.

![3b](image)
White solid, m.p. 145-146 °C; 1H NMR (500 MHz, CDCl$_3$) δ 7.73 (d, $J = 2.3$ Hz, 1H), 7.32 – 7.20 (m, 6H), 7.08 (d, $J = 6.4$ Hz, 2H), 6.92 (d, $J = 8.2$ Hz, 1H), 6.83 (d, $J = 4.4$ Hz, 2H), 6.54 (s, 1H), 4.62 (t, $J = 7.0$ Hz, 2H), 4.08 (s, 2H), 3.90 (s, 3H), 3.13 (t, $J = 7.0$ Hz, 2H) ppm. 13C NMR (125 MHz, CDCl$_3$) δ 156.9, 154.6, 149.6, 137.8, 132.6, 129.7, 129.2, 128.9, 128.5, 127.7, 127.2, 126.9, 126.7, 126.2, 123.4, 120.6, 120.2, 118.2, 117.5, 116.2, 110.2, 55.4, 50.7, 38.1, 25.6 ppm; IR (KBr): ν_{max} 3456, 2987, 1655, 1484, 1209 cm$^{-1}$; MS (EI): m/z ([M+1]): 444; HRMS (EI): m/z calcd for C$_{27}$H$_{22}$ClNO$_3$: 444.12882; found: 444.12890.

1-Benzyl-7-methoxy-3-methylchromeno [3,4-b]pyrrol-4(3H)-one (3c):

A mixture of 6-methoxy-2-phenyl-2H-chromene-3-carbaldehyde 1 (1.1 equiv) and ethyl methylglycinate 2 (3.0 equiv) in xylene (5 mL) was stirred at 140 ºC for 6 h. The progress of the reaction was monitored by TLC. Upon completion, the solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (2:8 of EtOAc/hexane) to give the pure product 3c.

White solid, m.p. 129-130 °C; 1H NMR (500 MHz, CDCl$_3$) δ 7.34 – 7.26 (m, 4H), 7.24 (d, $J = 7.3$ Hz, 2H), 7.10 (d, $J = 2.9$ Hz, 1H), 6.86 (dd, $J = 9.0$, 2.9 Hz, 1H), 6.81 (s, 1H), 4.24 (s, 2H), 4.08 (s, 3H), 3.63 (s, 3H). 13C NMR (125 MHz, CDCl$_3$) δ 155.8, 145.6, 139.3, 132.8, 128.7, 128.3, 126.9, 126.5, 117.9, 117.6, 117.1, 114.3, 106.9, 55.6, 36.0, 32.6.; IR (KBr): ν_{max} 3449, 2925, 1652, 1489, 1208, 766 cm$^{-1}$; MS (EI): m/z ([M+1]): 320; HRMS (EI): m/z calcd for C$_{20}$H$_{17}$NO$_3$: 320.12084; found: 320.12096.

1-Benzyl-7-bromo-3-methylchromeno [3,4-b]pyrrol-4(3H)-one (3d):

A mixture of 6-bromo-2-phenyl-2H-chromene-3-carbaldehyde 1 (1.1 equiv) and ethyl methylglycinate 2 (3.0 equiv) in xylene (5 mL) was stirred at 140 ºC for 6 h. The progress of the reaction was monitored by TLC. Upon completion, the solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (1:9 of EtOAc/hexane) to give the pure product 3d.
White solid, m.p.167-168 °C; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.86 (d, \(J = 2.3\) Hz, 1H), 7.39 (dd, \(J = 8.8, 2.3\) Hz, 1H), 7.34 (dd, \(J = 10.1, 4.8\) Hz, 2H), 7.26–7.23 (m, 4H), 6.74 (s, 1H), 4.20 (s, 2H), 4.05 (s, 3H).\(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 152.8, 141.5, 133.5, 131.1, 128.6, 128.3, 125.8, 124.1, 123.1, 122.0, 120.8, 116.3, 116.1, 111.8, 36.3, 31.7; IR (KBr): \(v_{\text{max}}\) 3449, 2925, 1652, 1489, 1208, 766 cm\(^{-1}\); MS (EI): m/z ([M+1]): 368; HRMS (EI): m/z calcd for C\(_{19}\)H\(_{14}\)BrNO\(_2\): 368.02079; found: 368.102085.

1-Benzyl-7-chloro-3-methylchromeno [3,4-b]pyrrol-4(3\(^H\))-one (3e):

A mixture of 6-chloro-2-phenyl-2H-chromene-3-carbaldehyde 1 (1.1 equiv) and ethyl methylglycinate 2 (3.0 equiv) in xylene (5 mL) was stirred at 140 °C for 6 h. The progress of the reaction was monitored by TLC. Up on completion, the solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (1:9 of EtOAc/hexane) to give the pure product 3e.

White solid, m.p.145-146 °C; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.70 (s, 1H), 7.34 (dd, \(J = 13.8, 6.6\) Hz, 2H), 7.27 (dd, \(J = 13.3, 5.0\) Hz, 5H), 6.73 (s, 1H), 4.20 (s, 2H), 4.05 (s, 3H); \(^{13}\)C NMR (125
MHz, CDCl$_3$) δ 154.9, 149.6, 138.9, 132.9, 129.3, 128.8, 128.6, 127.0, 126.6, 125.7, 123.2, 120.1, 118.4, 118.3, 117.4, 36.1, 32.7.; IR (KBr): ν_{max} 3449, 2925, 1652, 1489, 1208, 766 cm$^{-1}$; MS (EI): m/z ([M+1]): 324; HRMS (EI): m/z calcd for C$_{19}$H$_{14}$ClNO$_2$: 324.07131; found: 324.07145.

1-Benzyl-7-chloro-3-phenethylchromeno [3, 4-b] pyrrol-4(3H)-one (3f):-

A mixture of 6-chloro-2-phenyl-2H-chromene-3-carbaldehyde 1 (1.1 equiv) and methyl phenethylglycinate 2 (3.0 equiv) in xylene (5 mL) was stirred at 140 °C for 6 h. The progress of the reaction was monitored by TLC. Upon completion, the solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (2:8 of EtOAc/hexane) to give the pure product 3f.

![Chemical structure of 1-Benzyl-7-chloro-3-phenethylchromeno [3, 4-b] pyrrol-4(3H)-one (3f)](image)

White solid, m.p.125-126 °C; 1H NMR (500 MHz, CDCl$_3$) δ 7.67 (t, J = 10.6 Hz, 1H), 7.34 – 7.22 (m, 8H), 7.15 – 7.03 (m, 4H), 6.44 (s, 1H), 4.61 (t, J = 7.0 Hz, 2H), 4.11 (s, 2H), 3.12 (t, J = 7.0 Hz, 2H) ppm; 13C NMR (100 MHz, CDCl$_3$) δ 155.1, 151.3, 139.2, 137.9, 132.6, 128.9, 128.6, 128.5, 128.5, 127.4, 127.2, 126.6, 126.4, 124.0, 123.6, 118.9, 117.2, 117.1, 116.2, 50.7, 38.1, 32.6; IR (KBr): ν_{max} 3449, 2925, 1652, 1489, 1208, 766 cm$^{-1}$; MS (EI): m/z ([M+1]): 414; HRMS (EI): m/z calcd for C$_{26}$H$_{20}$ClNO$_2$: 414.10921; found: 414.11166.

3-Benzyl-1-(6-methylhept-5-en-2-yl) chromeno [3, 4-b] pyrrol-4(3H)-one (3g):-

A mixture of 2-methyl-2-(4-methylpent-3-en-1-yl)-2H-chromene-3-carbaldehyde 1 (1.1 equiv) and ethyl benzylglycinate 2 (3.0 equiv) in xylene (5 mL) was stirred at 140 °C for 6 h. The progress of the reaction was monitored by TLC. Upon completion, the solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (2:8 of EtOAc/hexane) to give the pure product 3g.
White solid, m.p.132-133 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.95 – 7.88 (m, 1H), 7.41 – 7.22 (m, 8H), 7.05 – 7.01 (m, 1H), 5.70 (q, J = 15.1 Hz, 2H), 5.22 – 5.09 (m, 1H), 3.35 – 3.20 (m, 1H), 2.13 – 2.02 (m, 2H), 1.86 – 1.73 (m, 1H), 1.69 (s, 3H), 1.60 (dd, J = 14.8, 7.0 Hz, 1H), 1.53 (s, 3H), 1.33 (d, J = 6.8 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 155.3, 151.2, 137.6, 132.1, 129.0, 128.8, 128.4, 127.8, 127.4, 127.1, 126.6, 126.4, 124.0, 123.7, 119.1, 117.3, 116.4, 51.8, 37.4, 30.4, 25.8, 20.9, 17.6; IR (KBr): νmax 3449, 2925, 1652, 1489, 1208, 766 cm⁻¹; MS (EI): m/z ([M+1]): 386; HRMS (EI): m/z calcd for C₂₆H₂₇NO₂: 386.20418; found: 386.20424.

1-Benzyl-7-methoxy-3-phenethylchromeno [3, 4-b] pyrrol-4(3H)-one (3h):-
A mixture of 6-methoxy-2-phenyl-2H-chromene-3-carbaldehyde 1 (1.1 equiv) and methyl phenethylglycinate 2 (3.0 equiv) in xylene (5 mL) was stirred at 140 ºC for 6 h. The progress of the reaction was monitored by TLC. Up on completion, the solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (3:7 of EtOAc/hexane) to give the pure product 3h.

White solid, m.p.162-163 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.32 – 7.19 (m, 7H), 7.10 (dd, J = 11.6, 7.0 Hz, 5H), 6.87 (dd, J = 9.0, 2.9 Hz, 1H), 6.51 (s, 1H), 4.63 (t, J = 7.0 Hz, 2H), 4.14 (s, 2H), 3.62 (s, 3H), 3.14 (t, J = 7.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 155.8, 155.2, 145.6,
139.3, 138.0, 132.6, 129.0, 128.6, 128.5, 128.3, 127.4, 126.6, 126.4, 119.1, 117.9, 116.5, 114.5, 106.8, 55.6, 50.7, 38.1, 32.5.; IR (KBr): ν_{max} 3449, 2925, 1652, 1489, 1208, 766 cm$^{-1}$; MS (EI): m/z ([M+1]): 410; HRMS (EI): m/z calcd for C$_{27}$H$_{23}$NO$_3$: 410.16779; found: 410.16786.

7-Chloro-1-methyl-3-phenethylchromeno [3, 4-b] pyrrol-4(3H)-one (3i):-

A mixture of 6-chloro-2H-chromene-3-carbaldehyde 1 (1.1 equiv) and methyl phenethylglycinate 2 (3.0 equiv) in xylene (5 mL) was stirred at 140 ºC for 6 h. The progress of the reaction was monitored by TLC. Up on completion, the solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (3:7 of EtOAc/hexane) to give the pure product 3i.

White solid, m.p.150-151 ºC; 1H NMR (500 MHz, CDCl$_3$) δ 8.02 (d, $J = 2.3$ Hz, 1H), 7.46 (dd, $J = 8.8$, 2.3 Hz, 1H), 7.33 – 7.24 (m, 5H), 7.17 – 7.13 (m, 2H), 6.73 (s, 1H), 4.67 – 4.60 (m, 2H), 3.14 (t, $J = 7.3$ Hz, 2H), 2.41 (d, $J = 0.5$ Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 154.5, 150.1, 137.8, 131.9, 129.8, 128.9, 128.5, 126.7, 126.3, 125.8, 121.2, 118.8, 116.8, 116.0, 114.0, 50.5, 38.3, 12.1.; IR (KBr): ν_{max} 3449, 2925, 1652, 1489, 1208, 766 cm$^{-1}$; MS (EI): m/z ([M+1]): 338; HRMS (EI): m/z calcd for C$_{20}$H$_{16}$ClNO$_2$: 338.79954; found: 338.79967.

1,3-Dimethylchromeno [3, 4-b] pyrrol-4(3H)-one (3j):-

A mixture of 2H-chromene-3-carbaldehyde 1 (1.1 equiv) and ethyl methylglycinate 2 (3.0 equiv) in xylene (5 mL) was stirred at 140 ºC for 6 h. The progress of the reaction was monitored by TLC. Up on completion, the solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (3:7 of EtOAc/hexane) to give the pure product 3j.
\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.92 (dd, \(J = 7.8, 1.5\) Hz, 1H), 7.36 (dd, \(J = 9.8, 8.3\) Hz, 2H), 7.30 – 7.27 (m, 1H), 6.91 (s, 1H), 4.07 (s, 3H), 2.46 (s, 3H) ppm; \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 153.6, 141.7, 131.3, 125.7, 123.0, 121.9, 120.7, 120.0, 117.1, 114.6, 36.3, 32.1 ppm; IR (KBr): \(\nu_{\text{max}}\) 3449, 2925, 1652, 1489, 1208, 766 cm\(^{-1}\); MS (EI): m/z ([M+1]): 214; HRMS (EI): m/z calcd for C\(_{13}\)H\(_{11}\)NO\(_2\): 214.07898; found: 338.07910.

1-Methyl-3-phenethylchromeno [3, 4-\(b\)] pyrrol-4(3\(H\))-one (3k):-

A mixture of 2H-chromene-3-carbaldehyde 1 (1.1 equiv) and methyl phenethylglycinate 2 (3.0 equiv) in xylene (5 mL) was stirred at 140 °C for 6 h. The progress of the reaction was monitored by TLC. Up on completion, the solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (3:7 of EtOAc/hexane) to give the pure product 3k.

![3k](image)

White solid, m.p. 155-156 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.92 (dd, \(J = 7.8, 1.5\) Hz, 1H), 7.42 (dd, \(J = 8.2, 1.3\) Hz, 1H), 7.38 – 7.33 (m, 1H), 7.31 – 7.26 (m, 2H), 7.26 – 7.19 (m, 2H), 7.16 – 7.11 (m, 2H), 6.70 (s, 1H), 4.64 – 4.58 (m, 2H), 3.12 (t, \(J = 7.3\) Hz, 2H), 2.40 (s, 3H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 151.2, 147.5, 138.0, 131.7, 128.9, 128.5, 127.6, 127.0, 126.6, 123.9, 123.2, 119.4, 117.1, 50.5, 38.3, 12.2; IR (KBr): \(\nu_{\text{max}}\) 3449, 2925, 1652, 1489, 1208, 766 cm\(^{-1}\); MS (EI): m/z ([M+1]): 304; HRMS (EI): m/z calcd for C\(_{20}\)H\(_{17}\)NO\(_2\): 304.35448; found: 304.35456.

Preparation of 2-(4-benzyl-1-methyl-1H-pyrrol-3-yl)phenol (5)
Typical experimental procedure:

A mixture of 2H-chromene-3-carbaldehyde 1 (1.1 equiv) and sarcocine (4) (3.0 equiv) in xylene (5 mL) at 140 ºC for 6 h and then the mixture was cooled and filtered. The progress of the reaction was monitored by TLC; upon completion, the solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (EtOAc/hexane) to give the pure product.

2-(4-Benzyl-1-methyl-1H-pyrrol-3-yl) phenol (5a):

A mixture of 2-phenyl-2H-chromene-3-carbaldehyde 1 (1.1 equiv) and sarcocine (4) (3.0 equiv) in xylene (5 mL) at 140 ºC for 6 h and then the mixture was cooled and filtered. The progress of the reaction was monitored by TLC; upon completion, the solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (2:8 of EtOAc/hexane) to give the pure product.

Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.24 – 7.08 (m, 7H), 6.95 (dd, J = 8.1, 2.2 Hz, 1H), 6.87 (ttdd, J = 7.4, 2.4, 1.1 Hz, 1H), 6.59 (d, J = 2.1 Hz, 1H), 6.36 (s, 1H), 5.54 – 5.51 (m, 1H), 3.68 (s, 2H), 3.59 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 153.6, 141.9, 131.1, 128.6, 128.4, 128.3, 125.7, 123.2, 121.9, 120.7, 120.0, 117.3, 114.6, 36.3, 31.7; IR (KBr): νmax 3487, 3059, 2930, 1490, 1206, 1036, 761 cm⁻¹; MS (EI): m/z ([M+1]): 264; HRMS (EI): m/z calcd for C₁₈H₁₇NO: 264.13101; found: 264.13116.
2-(4-Benzyl-1-methyl-1H-pyrrol-3-yl)-4-chlorophenol (5b):-
A mixture of 6-chloro-2-phenyl-2H-chromene-3-carbaldehyde 1 (1.1 equiv) and sarcocine (4) (3.0 equiv) in xylene (5 mL) at 140 °C for 6 h and then the mixture was cooled and filtered. The progress of the reaction was monitored by TLC; upon completion, the solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (3:7 of EtOAc/hexane) to give the pure product.

Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.24 – 7.21 (m, 2H), 7.16 – 7.12 (m, 2H), 7.07 (dd, J = 11.9, 4.9 Hz, 3H), 6.86 (d, J = 8.6 Hz, 1H), 6.59 (d, J = 2.2 Hz, 1H), 6.38 (d, J = 1.7 Hz, 1H), 5.45 (s, 1H), 3.66 (s, 2H), 3.61 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 152.8, 141.5, 133.5, 131.1, 128.6, 128.3, 125.8, 124.1, 123.1, 122.0, 120.8, 116.3, 116.1, 111.8, 36.3, 31.7; IR (KBr): ν_max 3487, 3059, 2930, 1490, 1206, 1036, 761 cm⁻¹; MS (EI): m/z ([M+1]): 298; HRMS (EI): m/z calcd for C₁₈H₁₆ClNO: 298.09241; found: 298.09249.

2-(4-Benzyl-1-methyl-1H-pyrrol-3-yl)-4-bromophenol (5c):-
A mixture of 6-bromo-2-phenyl-2H-chromene-3-carbaldehyde 1 (1.1 equiv) and sarcocine (4) (3.0 equiv) in xylene (5 mL) at 140 °C for 6 h and then the mixture was cooled and filtered. The progress of the reaction was monitored by TLC; upon completion, the solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (3:7 of EtOAc/hexane) to give the pure product.

Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.29 – 7.26 (m, 1H), 7.25 – 7.22 (m, 2H), 7.20 (d, J = 2.5 Hz, 1H), 7.18 – 7.14 (m, 1H), 7.11 – 7.07 (m, 2H), 6.82 (d, J = 8.6 Hz, 1H), 6.60 (d, J = 2.4 Hz, 1H), 6.39 (d, J = 2.3 Hz, 1H), 5.48 (s, 1H), 3.66 (s, 2H), 3.62 (s, 3H) ppm. ¹³C NMR
(100 MHz, CDCl$_3$) δ 152.8, 141.5, 133.5, 131.1, 128.6, 128.3, 125.8, 124.1, 123.1, 122.0, 120.8, 116.3, 116.1, 111.8, 36.3, 31.7 ppm. IR (KBr): ν_{max} 3487, 3059, 2930, 1490, 1206, 1036, 761 cm$^{-1}$; MS (EI): m/z ([M+1]): 342; HRMS (EI): m/z calcd for C$_{18}$H$_{16}$BrNO: 342.22974; found: 342.22976.

2-(4-Benzyl-1-methyl-1H-pyrrol-3-yl)-4-methoxyphenol (5d):-
A mixture of 6-methoxy-2-phenyl-2H-chromene-3-carbaldehyde 1 (1.1 equiv) and sarcocine (4) (3.0 equiv) in xylene (5 mL) at 140 ºC for 6 h and then the mixture was cooled and filtered. The progress of the reaction was monitored by TLC; upon completion, the solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (3:7 of EtOAc/hexane) to give the pure product.

Colorless liquid; 1H NMR (500 MHz, CDCl$_3$) δ 7.23 (dd, J = 7.9, 7.1 Hz, 2H), 7.16 – 7.10 (m, 3H), 6.87 (dd, J = 8.8, 1.1 Hz, 1H), 6.75 (ddd, J = 8.8, 3.0, 1.1 Hz, 1H), 6.66 – 6.61 (m, 2H), 6.40 – 6.38 (m, 1H), 5.18 (d, J = 2.0 Hz, 1H), 3.71 (s, 2H), 3.66 (s, 3H), 3.61 (s, 3H).13C NMR (100 MHz, CDCl$_3$) δ 152.9, 147.6, 141.9, 128.6, 128.2, 127.4, 125.7, 122.9, 122.3, 122.0, 120.7, 117.6, 115.9, 115.1, 114.1, 55.7, 36.3, 31.7; IR (KBr): ν_{max} 3487, 3059, 2930, 1490, 1206, 1036, 761 cm$^{-1}$; MS (EI): m/z ([M+1]): 294; HRMS (EI): m/z calcd for C$_{19}$H$_{20}$NO$_2$: 294.14158; found: 294.14167.

4-Bromo-2-(1-methyl-4-(6-methylhept-5-en-2-yl)-1H-pyrrol-3-yl) phenol (5e):-
A mixture of 6-bromo-2-methyl-2-(4-methylpent-3-en-1-yl)-2H-chromene-3-carbaldehyde 1 (1.1 equiv) and sarcocine (4) (3.0 equiv) in xylene (5 mL) at 140 ºC for 6 h and then the mixture was cooled and filtered. The progress of the reaction was monitored by TLC; upon completion, the solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (1:9 of EtOAc/hexane) to give the pure product.
Colorless liquid; 1H NMR (500 MHz, CDCl$_3$) δ 7.29 – 7.25 (m, 2H), 6.83 (d, $J = 8.5$ Hz, 1H), 6.52 (dd, $J = 12.2$, 2.3 Hz, 2H), 5.48 (s, 1H), 4.95 (dd, $J = 7.7$, 6.5 Hz, 1H), 3.66 (d, $J = 2.3$ Hz, 3H), 2.57 – 2.47 (m, 1H), 1.85 (dd, $J = 14.9$, 7.4 Hz, 2H), 1.63 (s, 3H), 1.46 – 1.33 (m, 3H), 1.26 (s, 3H), 1.08 (d, $J = 6.9$ Hz, 3H) ppm. 13C NMR (125 MHz, CDCl$_3$) δ 151.9, 133.4, 131.4, 131.0, 130.0, 124.6, 124.4, 120.5, 119.5, 116.1, 115.4, 111.7, 38.8, 36.3, 29.7, 26.0, 25.6, 22.2, 17.6 ppm; IR (KBr): ν_{max} 3487, 3059, 2930, 1490, 1206, 1036, 761 cm$^{-1}$; MS (EI): m/z ([M+1]) 362; HRMS (EI): m/z calcd for C$_{19}$H$_{24}$BrNO: 362.10413; found: 362.10418.

2-(1, 4-Dimethyl-1H-pyrrol-3-yl) phenol (5f):-
A mixture of 2H-chromene-3-carbaldehyde 1 (1.1 equiv) and sarcocine (4) (3.0 equiv) in xylene (5 mL) at 140 ºC for 6 h and then the mixture was cooled and filtered. The progress of the reaction was monitored by TLC; upon completion, the solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (1:9 of EtOAc/hexane) to give the pure product.

Colorless liquid; 1H NMR (300 MHz, CDCl$_3$) δ 7.23 – 7.12 (m, 2H), 7.01 – 6.86 (m, 2H), 6.63 – 6.50 (m, 2H), 5.55 (s, 1H), 3.65 (s, 3H), 1.99 (s, 3H) ppm; 13C NMR (100 MHz, CDCl$_3$) δ 153.6, 141.7, 131.3, 125.7, 123.0, 121.9, 120.7, 120.0, 117.1, 114.6, 36.3, 32.1 ppm; IR (KBr): ν_{max} 3487, 3059, 2930, 1490, 1206, 1036, 761 cm$^{-1}$; MS (EI): m/z ([M+1]) 188; HRMS (EI): m/z calcd for C$_{12}$H$_{13}$NO: 188.18734; found: 188.18739.

2-(4-(2-methoxybenzyl)-1-methyl-1H-pyrrol-3-yl)phenol (5g):-
A mixture of 2-(2-methoxyphenyl)-2H-chromene-3-carbaldehyde 1 (1.1 equiv) and sarcocine (4) (3.0 equiv) in xylene (5 mL) at 140 ºC for 6 h and then the mixture was cooled and filtered. The
progress of the reaction was monitored by TLC; upon completion, the solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (1:9 of EtOAc/hexane) to give the pure product.

\[
\begin{align*}
\text{Colorless liquid; }^1\text{H NMR (500 MHz, CDCl}_3\text{) } & \delta 7.22 - 7.14 \text{ (m, 3H), 7.04 (dd, } J = 7.4, 1.6 \text{ Hz, 1H), 6.97 (dd, } J = 8.1, 1.0 \text{ Hz, 1H), 6.91 - 6.81 \text{ (m, 3H), 6.57 (d, } J = 2.4 \text{ Hz, 1H), 6.29 (d, } J = 2.3 \text{ Hz, 1H), 5.80 (s, 1H), 3.76 (s, 3H), 3.66 (s, 2H), 3.59 (s, 3H); }^1\text{C NMR (101 MHz, CDCl}_3\text{) } & \delta 157.1, 153.7, 131.2, 130.3, 128.3, 127.1, 122.5, 122.1, 121.7, 120.5, 120.4, 119.9, 117.55, 114.6, 110.3, 55.3, 36.3, 26.0; \text{ IR (KBr): } \nu_{\text{max}} 3489, 3058, 2931, 1493, 1209, 1038, 767 \text{ cm}^{-1}; \text{ MS (EI): } m/z ([M+1]): 294; \text{ HRMS (EI): } m/z \text{ calcd for C}_{19}H_{20}NO_2: 294.14155; \text{ found: 294.14162.}
\end{align*}
\]
3. NMR spectra of products

1H NMR (500 MHz, CDCl$_3$) spectrum of compound 3a

13C NMR (125 MHz, CDCl$_3$) spectrum of compound 3a
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 3b

13C NMR (125 MHz, CDCl$_3$) spectrum of compound 3b
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 3c

13C NMR (125 MHz, CDCl$_3$) spectrum of compound 3c
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 3d

13C NMR (125 MHz, CDCl$_3$) spectrum of compound 3d
1H NMR (500 MHz, CDCl₃) spectrum of compound 3e

13C NMR (125 MHz, CDCl₃) spectrum of compound 3e
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 3f

13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3f
\[1^H \text{NMR (500 MHz, CDCl}_3\text{)} \text{ spectrum of compound 3g} \]

\[13^C \text{NMR (125 MHz, CDCl}_3\text{)} \text{ spectrum of compound 3g} \]
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 3h

13C NMR (125 MHz, CDCl$_3$) spectrum of compound 3h
\(^1\)H NMR (500 MHz, CDCl\textsubscript{3}) spectrum of compound 3i

\(^{13}\)C NMR (125 MHz, CDCl\textsubscript{3}) spectrum of compound 3i
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 3j

13C NMR (125 MHz, CDCl$_3$) spectrum of compound 3j
H NMR (400 MHz, CDCl₃) spectrum of compound 3k

C NMR (100 MHz, CDCl₃) spectrum of compound 3k
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 5a

13C NMR (125 MHz, CDCl$_3$) spectrum of compound 5a
$\textbf{1H NMR (500 MHz, CDCl}_3\text{)}$ spectrum of compound 5b

$\textbf{13C NMR (100 MHz, CDCl}_3\text{)}$ spectrum of compound 5b
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 5c

13C NMR (100 MHz, CDCl$_3$) spectrum of compound 5c
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 5d

13C NMR (100 MHz, CDCl$_3$) spectrum of compound 5d
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 5e

13C NMR (125 MHz, CDCl$_3$) spectrum of compound 5e
1H NMR (300 MHz, CDCl$_3$) spectrum of compound 5f

13C NMR (100 MHz, CDCl$_3$) spectrum of compound 5f
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 5g

13C NMR (100 MHz, CDCl$_3$) spectrum of compound 5g
4. X-ray Crystallography.

X-ray data for the compounds were collected at room temperature using a Bruker Smart Apex CCD diffractometer with graphite monochromated MoKα radiation (λ=0.71073Å) with ω-scan method [1]. Preliminary lattice parameters and orientation matrices were obtained from four sets of frames.

Integration and scaling of intensity data was accomplished using SAINT program [1]. The structure was solved by direct methods using SHELXS [2] and refinement was carried out by full-matrix least-squares technique using SHELXL [2]. Anisotropic displacement parameters were included for all non-hydrogen atoms. All H atoms were positioned geometrically and treated as riding on their parent C atoms with U_{iso}(H) 1.2U_{eq}(C).

Crystal Data for 3b: C_{27}H_{22}NO_{3}Cl (M=443.93 g/mol): monoclinic, space group P2_{1}/n (no. 14), a = 12.0549(11) Å, b = 8.6910(8) Å, c = 21.1744(19) Å, β = 103.921(1)°, V = 2153.3(3) Å³, Z = 4, T = 294.15 K, μ(Mo Kα) = 0.208 mm⁻¹, D_{calc} = 1.3693 g/cm³, 24460 reflections measured (3.96° ≤ 2Θ ≤ 56.74°), 5229 unique (R_{int} = 0.0219, R_{sigma} = 0.0167) which were used in all calculations. The final R₁ was 0.0449 (I>2σ(I)) and wR₂ was 0.1430 (all data). CCDC 1532822 contains supplementary Crystallographic data for the structure. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(0) 1223 336 033; email: deposit@ccdc.cam.ac.uk].

Figure Caption

Fig.1. A view of 3b, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented by circles of arbitrary radii.