Supplementary information

A synthetic dodecanolide library for the identification of putative semiochemicals emitted by mantellid frogs

Pardha Saradhi Peram, ^a Miguel Vences^b and Stefan Schulz^{a,*}

^aInstitut für Organische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.

^bZoologisches Institut, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany

Contents

1.	Aass spectra of diastereomers of synthesized compounds and compariosn w	
	natural compounds	2
2.	¹ H-NMR and ¹³ C-NMR spectra of intermediates leading to 2-methyl-11-	
	dodecanolide (7)	3-8
3.	¹ H-NMR and ¹³ C-NMR spectra of intermediates leading to 4-methyl-11-	
	dodecanolide (8)	9-12
4.	¹ H-NMR and ¹³ C-NMR spectra of intermediates leading to 6-methyl-11-	
	dodecanolide (9)	13-19
5.	¹ H-NMR and ¹³ C-NMR spectra of intermediates leading to 8-methyl-11-	
	dodecanolide (10)	20-25
6.	¹ H-NMR and ¹³ C-NMR spectra of intermediates leading to 10-methyl-11-	
	dodecanolide (11)	26-30

1. Mass spectra of diastereomers of synthesized compounds and compariosn with natural compounds

Fig. S1 Mass spectra and gas chromatographic retention indices of natural compounds (left) and synthetic compounds (right).

2.¹H-NMR and ¹³C-NMR spectra of intermediates leading to 2-methyl-11-dodecanolide (7)

3.¹H-NMR and ¹³C-NMR spectra of intermediates leading to 4-methyl-11-dodecanolide (8)

9

4.¹H-NMR and ¹³C-NMR spectra of intermediates leading to 6-methyl-11-dodecanolide (9)

5.¹H-NMR and ¹³C-NMR spectra of intermediates leading to 8-methyl-11-dodecanolide (10)

6. ¹H-NMR and ¹³C-NMR spectra of intermediates leading to 10-methyl-11dodecanolide (11)

