Supporting Information for:

Inhibitors of nicotinamide N-methyltransferase designed to mimic the methylation reaction transition state

Matthijs J. van Haren, Rebecca Taig, Jilles Kuppens, Javier Sastre Toraño, Ed E. Moret, Richard B. Parsons, Davide Sartini, Monica Emanuelli and Nathaniel I. Martin*

*a Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
*b Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, UK
*c Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy

*corresponding author.

*n.i.martin@uu.nl

Table of Contents

Page
S2-32 1H and 13C NMR spectra for final compounds 2a-i, 9-25, 27, 28, 35, 41 and 45
S33-43 Analytical RP-HPLC traces for compounds 9-25, 27, 28, 35, 41 and 45
S44 SDS-PAGE gel analysis of recombinant wt-hNNMT
S45-46 IC50 curves for compounds 14, 16, 20, 22, 23, 45 and sinfungin, AdoHcy, MNA, 4MeMNA and norharmane
NMR spectra

1-Ethyl-3-carbamoyl-pyridin-1-ium iodide (2a)
1-Propyl-3-carbamoyl-pyridin-1-ium bromide (2b)
1-Butyl-3-carbamoyl-pyridin-1-ium bromide (2c)
1-Allyl-3-carbamoyl-pyridin-1-ium bromide (2d)
1-Isopropyl-3-carbamoyl-pyridin-1-ium iodide (2e)
1-Cyclopropylmethyl-3-carbamoyl-pyridin-1-ium bromide (2f)
1-Cyclobutylmethyl-3-carbamoyl-pyridin-1-ium bromide (2g)
1-Cyclohexylmethyl-3-carbamoyl-pyridin-1-ium bromide (2h)
1-Benzyl-3-carbamoyl-pyridin-1-ium bromide (2i)
3-((((2R,3S,4R,5R)-5-(6-Amino-9H-purin-9-yl)-3,4-di-hydroxytetrahydrofuran-2-yl)methyl)amino) methyl) benzamide (9)
3-(((2S,3S,4R,5R)-5-(6-Amino-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl(thio)methyl)benzamide (10)
3-(((2S,3S,4R,5R)-5-(6-Amino-9H-purin-9-yl)-3,4-di-hydroxytetrahydrofuran-2-yl)methoxy)methylbenzamide (11)
5-(3-Carbamoylphenyl)pent-4-ynoic acid (12)
5-(3-Carboxamidophenyl)pent-4-ynoic amide (13)
6-(3-Carbamoylphenyl)hex-5-ynoic acid (14)
6-(3-Carbamoylphenyl)hex-5-ynoic amide (15)
7-(3-Carbamoylphenyl)hept-6-ynoic acid (16)
7-(3-Carbamoylphenyl)hept-6-ynoic amide (17)
5-(3-Carbamoylphenyl)pentanoic acid (18)
5-(3-Carbamoylphenyl)pentanoic amide (19)
6-(3-Carbamoylphenyl)hexanoic acid (20)
6-(3-Carbamoylphenyl)hexanoic amide (21)
7-(3-Carbamoylphenyl)heptanoic acid (22)
7-(3-Carbamoylphenyl)heptanoic amide (23)
(Z)-6-(3-Carbamoylphenyl)hex-5-enoic acid (24)
(E)-6-(3-Carbamoylphenyl)hex-5-enoic acid (25)
(S)-2-Amino-6-(3-carbamoylphenyl)hex-5-ynoic acid (27)
(S)-2-Amino-6-(3-carbamoylphenyl)hexanoic acid (28)
(S)-2-Amino-4-((3-carbamoylbenzyl)amino)butanoic acid (35)
(S)-2-Amino-4-((3-carbamoylbenzyl)thio)butanoic acid (41)
(S)-2-Amino-4-(((2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl)(3-carbamoylbenzyl)amino)butanoic acid (45)
HPLC Traces

3-(((2R,3S,4R,5R)-5-(6-Amino-9H-purin-9-yl)-3,4-di-hydroxytetrahydrofuran-2-yl)methyl)amino)methyl) benzamide (9)

3-(((2S,3S,4R,5R)-5-(6-Amino-9H-purin-9-yl)-3,4-di-hydroxytetrahydrofuran-2-yl)methyl)thio)methyl) benzamide (10)
3-(((S,3S,4R,5R)-5-(6-Amino-9H-purin-9-yl)-3,4-di-hydroxytetrahydrofuran-2-yl)methoxy)methyl)benzamide (11)

5-(3-Carbamoylphenyl)pent-4-ynoic acid (12)
5-(3-Carbamoylphenyl)pent-4-ynoic amide (13)

6-(3-Carbamoylphenyl)hex-5-ynoic acid (14)
6-(3-Carbamoylphenyl)hex-5-ynoic amide (15)

7-(3-Carbamoylphenyl)hept-6-ynoic acid (16)
7-(3-Carbamoylphenyl)hept-6-ynoic amide (17)

5-(3-Carbamoylphenyl)pentanoic acid (18)
5-(3-Carbamoylphenyl)pentanoic amide (19)

6-(3-Carbamoylphenyl)hexanoic acid (20)
6-(3-Carbamoylphenyl)hexanoic amide (21)

7-(3-Carbamoylphenyl)heptanoic acid (22)
7-(3-Carbamoylphenyl)heptanoic amide (23)

(Z)-6-(3-Carbamoylphenyl)hex-5-enoic acid (24)
(E)-6-(3-Carbamoylphenyl)hex-5-enoic acid (25)

(S)-2-Amino-6-(3-carbamoylphenyl)hex-5-ynoic acid (27)
(S)-2-Amino-6-(3-carbamoylphenyl)hexanoic acid (28)

(S)-2-Amino-4-((3-carbamoylbenzyl)amino)butanoic acid (35)
(S)-2-Amino-4-((3-carbamoylbenzyl)thio)butanoic acid (41)

(S)-2-Amino-4-(((2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl)(3-carbamoylbenzyl)amino)butanoic acid (45)
Supplemental Figure 1. SDS-PAGE gel showing the purity of wild type human nicotinamide N-methyltransferase (wt-hNNMT). Proteins were stained with Coomassie Brilliant Blue. Lane 1 contains a molecular weight standard, lane 2 contains 10 µg of the crude product in an extract of IPTG-induced E.coli BL21 (DE3) harbouring pET-28a-wt-hNNMT, lane 3 contains 10 µg of the affinity purified recombinant wt-hNNMT, lane 4 contains 5 µg of the affinity purified recombinant wt-hNNMT and lane 5 contains 2 µg of the affinity purified recombinant wt-hNNMT.
IC₅₀ Curves

<table>
<thead>
<tr>
<th>Compound</th>
<th>IC₅₀ and R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinefungin</td>
<td>IC₅₀ = 17.0 ± 3.4 µM, R² = 0.899</td>
</tr>
<tr>
<td>MNA</td>
<td>IC₅₀ = 24.6 ± 3.2 µM, R² = 0.958</td>
</tr>
<tr>
<td>AdoHcy</td>
<td>IC₅₀ = 75.4 ± 6.3 µM, R² = 0.979</td>
</tr>
<tr>
<td>4MeMNA</td>
<td>IC₅₀ = 95.9 ± 14.1 µM, R² = 0.934</td>
</tr>
<tr>
<td>Norharmane</td>
<td>IC₅₀ = 115.3 ± 20.6 µM, R² = 0.909</td>
</tr>
<tr>
<td>Compound 14</td>
<td>IC₅₀ = 189.7 ± 30.0 µM, R² = 0.870</td>
</tr>
<tr>
<td>Compound 16</td>
<td>Compound 20</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| IC₅₀ = 57.8 ± 4.2 µM
R² = 0.983 | IC₅₀ = 69.0 ± 14.8 µM
R² = 0.862 |
| Compound 22 | Compound 23 |
| ![Graph for Compound 22](image3) | ![Graph for Compound 23](image4) |
| IC₅₀ = 148.1 ± 36.3 µM
R² = 0.644 | IC₅₀ = 30.8 ± 3.6 µM
R² = 0.961 |
| Compound 45 | |
| ![Graph for Compound 45](image5) | |
| IC₅₀ = 29.2 ± 4.0 µM
R² = 0.945 |