Highly Efficient One-Pot Assemble of Peptides by Double Chemoselective Coupling

Ivo E. Sampaio-Dias,^{†a} Carlos A. D. Sousa,^a Sara C. Silva-Reis,^a Sara Ribeiro,^a Xerardo García-Mera,^b José E. Rodríguez-Borges^{†a}

Supporting Information

Table of contents

1. NMR spectra of compounds 1a–n	S2
2. ¹ H-NMR experiment for the interaction between TBTU and HOSu performed in DMSO- d_6	S26
3. HPLC chromatograms for pseudotripepeptide 1n and diastereoisomeric mixture 1n/1n'	S27
4. ¹ H-NMR experiments for hexapeptide 1m in DMSO- <i>d</i> ₆ at 26, 40, 60, 80 and 100°C	S28
5. LC-ESI/MS for tripeptide 1b	S29
6. ¹ H-NMR experiments for tripeptide 1b in DMSO- <i>d</i> ₆ at 26, 40, 60, 80, 100 and 115°C	S30

^{a.} LAQV / REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal.

^{b.} Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain.

[†] Corresponding authors e-mails: idias@fc.up.pt (Ivo E. Sampaio-Dias); e-mail: jrborges@fc.up.pt (José E. Rodríguez-Borges)

1. NMR spectra of compounds 1a-n

Fig. S1. ¹H-NMR spectrum (CDCl₃, 400 MHz) of compound 1a.

Fig. S2. DEPT (above) and ¹³C-NMR (bottom) spectra (CDCl₃, 101 MHz) of compound 1a.

Fig. S3. ¹H-NMR spectrum (CDCl₃, 400 MHz) of compound 1b.

Fig. S4. DEPT (above) and ¹³C-NMR (bottom) spectra (CDCl₃, 101 MHz) of compound 1b.

Fig. S5. ¹H-NMR spectrum (CDCl₃, 400 MHz) of compound 1c.

Fig. S7. ¹H-NMR spectrum (CDCl₃, 400 MHz) of compound 1d.

Fig. S8. DEPT (above) and ¹³C-NMR (bottom) spectra (CDCl₃, 101 MHz) of compound 1d.

Fig. S9. ¹H-¹H-NMR (COSY) spectrum (CDCl₃) of compound 1d.

Fig. S10. ¹H-¹³C-NMR (HSQC) spectrum (CDCl₃) of compound 1d.

Fig. S11. ¹H-NMR spectrum (CDCl₃, 400 MHz) of compound 1e.

Fig. S12. DEPT (above) and ¹³C-NMR (bottom) spectra (CDCl₃, 101 MHz) of compound 1e.

Fig. S13. ¹H-¹H-NMR (COSY) spectrum (CDCl₃) of compound 1e.

Fig. S14. ¹H-¹³C-NMR (HSQC) spectrum (CDCl₃) of compound 1e.

Fig. S15. ¹H-NMR spectrum (CDCl₃, 400 MHz) of compound 1f.

Fig. S16. DEPT (above) and ¹³C-NMR (bottom) spectra (CDCl₃, 101 MHz) of compound 1f.

Fig. S17. ¹H-¹H-NMR (COSY) spectrum (CDCl₃) of compound 1f.

Fig. S18. 1 H- 13 C-NMR (HSQC) spectrum (CDCl₃) of compound 1f.

Fig. S19. ¹H-NMR spectrum (CDCl₃, 400 MHz) of compound 1g.

Fig. S20. DEPT (above) and ¹³C-NMR (bottom) spectra (CDCl₃, 101 MHz) of compound 1g.

Fig. S21. ¹H-¹H-NMR (COSY) spectrum (CDCl₃, 400 MHz) of compound 1g.

Fig. S22. ¹H-¹³C-NMR (HSQC) spectrum (CDCl₃, 400 MHz) of compound 1g.

Fig. S23. ¹H-NMR spectrum (CDCl₃, 400 MHz) of compound 1h.

Fig. S24. DEPT (above) and ¹³C-NMR (bottom) spectra (CDCl₃, 101 MHz) of compound 1h.

Fig. S25. ¹H-¹H-NMR (COSY) spectrum (CDCl₃, 400 MHz) of compound 1h.

Fig. S26. ¹H-¹³C-NMR (HSQC) spectrum (CDCl₃, 400 MHz) of compound 1h.

Fig. S27. ¹H-NMR spectrum (CDCl₃, 400 MHz) of compound 1i.

Fig. S28. DEPT (above) and 13 C-NMR (bottom) spectra (CDCl₃, 101 MHz) of compound 1i.

Fig. S29. ¹H-¹H-NMR (COSY) spectrum (CDCl₃, 400 MHz) of compound 1i.

Fig. S30. ¹H-¹³C-NMR (HSQC) spectrum (CDCl₃, 400 MHz) of compound 1i.

Fig. S31. ¹H-NMR spectrum (CDCl₃, 400 MHz) of compound 1j.

Fig. S32. DEPT (above) and ¹³C-NMR (bottom) spectra (CDCl₃, 101 MHz) of compound 1j.

Fig. S33. ¹H-NMR spectrum (CDCl₃, 400 MHz) of compound 1k.

Fig. S34. DEPT (above) and ¹³C-NMR (bottom) spectra (CDCl₃, 101 MHz) of compound 1k.

Fig. S35. ¹H-NMR spectrum (DMSO-*d*₆, 400 MHz) of compound 11.

Fig. S36. DEPT (above) and ¹³C-NMR (bottom) spectra (DMSO-*d*₆, 101 MHz) of compound 11.

Fig. S37. ¹H-¹H-NMR (COSY) spectrum (DMSO-*d*₆) of compound **11**.

Fig. S38. ¹H-¹³C-NMR (HSQC) spectrum (DMSO-*d*₆) of compound 11.

Fig. S39. ¹H-NMR spectrum (DMSO-*d*₆, 400 MHz) of compound 1m.

Fig. 40. DEPT (above) and ¹³C-NMR (bottom) spectra (DMSO-*d*₆, 101 MHz) of compound 1m.

Fig. S41. ¹H-¹H-NMR (COSY) spectrum (DMSO-*d*₆) of compound **1m**.

Fig. S42. ¹H-¹³C-NMR (HSQC) spectrum (DMSO-*d*₆) of compound **1m**.

Fig. S43. ¹H-NMR spectrum (CDCl₃, 400 MHz) of compound 1n.

Fig. 44. DEPT (above) and 13 C-NMR (bottom) spectra (CDCl₃, 101 MHz) of compound 1n.

Fig. S45. ¹H-¹H-NMR (COSY) spectrum (CDCl₃) of compound 1n.

Fig. S46. ¹H-¹³C-NMR (HSQC) spectrum (CDCl₃) of compound 1n.

Fig. S47. ¹H-NMR spectrum (CDCl₃, 400 MHz) of compounds 1n/1n'.

Fig. 48. DEPT (above) and ¹³C-NMR (bottom) spectra (CDCl₃, 101 MHz) of compounds 1n/1n'.

2. ¹H-NMR experiment for the interaction between TBTU and HOSu performed in DMSO-d₆

Fig. S49. ¹H-NMR spectrum (DMSO-*d*₆, 400 MHz) of the reaction between TBTU and HOSu.

3. HPLC chromatograms for pseudotripepeptide 1n and diastereoisomeric mixture 1n/1n'

Fig. S50. HPLC chromatogram of pseudotripeptide **1n** (*dr*: 99%). Eluent: 60-100% gradient of CH₃CN in water. $t_{\rm R} = 14.5$ min for **1n** and $t_{\rm R} = 12.2$ min for **1n**'.

Fig. S51. HPLC chromatogram of diastereoisomeric mixture of 1n/1n'. Eluent: 60-100% gradient of CH₃CN in water. $t_R = 14.5$ min for 1n and $t_R = 12.2$ min for 1n'.

4. ¹*H*-*NMR* experiments for hexapeptide 1m in DMSO-d₆ at 26, 40, 60, 80 and 100°C

Fig. S52. ¹H-NMR spectra (DMSO-*d*₆, 400 MHz) of hexapeptide 1m at 26, 40, 60, 80 and 100°C.

5. LC-ESI/MS for tripeptide 1b

50 40-30-

20 10-

0-

ò

5

20.66 22.98

13.40

15

17 49

31.09 31.16 31.29

27.50

31.61

33.86

38.12

Fig. S53. LC-ESI/MS (Orbitrap, positive mode) for tripeptide 1b (t_R =30.32 min).

6. ¹*H*-*NMR* experiments for tripeptide **1b** in DMSO- d_6 at 26, 40, 60, 80, 100 and 115°C

Fig. S54. ¹H-NMR spectra (DMSO-*d*₆, 400 MHz) of tripeptide **1b** at 26, 40, 60, 80, 100 and 115°C.