Supporting Information

Iridium-Catalyzed Direct C–H Amidation of Anilines with Sulfonyl Azides: Easy Access to 1,2-Diaminobenzenes

Lianhui Wang, Zi Yang, Mengqi Yang, Rongyi Zhang, Changsheng Kuai, and Xiuling Cui*

Engineering Research Center of Molecular Medicine, Ministry of Education, Key Laboratory of Xiamen Marine and Gene Drugs, Institute of Molecular Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, Fujian, China

Email: cuixl@hqu.edu.cn
Table of Contents

1. General information...S3
2. The representative procedure for the synthesis of compounds..........................S3
3. Preparation and characterization of compounds ..S4
4. Intermolecular competition experiment with anlines 1a and 1c (Scheme 4)........... S19
5. Intermolecular competition experiment with sulfonyl azides 2a and 2f (Scheme 5) S20
6. Iridium-catalyzed direct ortho-C–H amidation of sulfonyl azides 2a with aniline 1e in 1,2-DCE and [D]₄-AcOH (Scheme 6)..S21
7. Removal of the 2-pyridyl and sulfonyl moieties (Scheme 8)......................................S22
8. References... S25
9. NMR spectra of compounds 3 and 4...S26
1. General information

Unless otherwise stated, all commercial materials and solvents were used directly without further purification. Melting points were determined in open glass capillaries and were uncorrected. 1H NMR spectra were recorded on 400 MHz spectrometers, and 13C NMR spectra were recorded on a 100 MHz spectrometer. Chemical shifts (δ in ppm) were referenced to tetramethylsilane ($\delta = 0$ ppm) in CDCl$_3$ or [d]$_6$-DMSO as an internal standard at room temperature. 13C NMR spectra were obtained by using the same NMR spectrometers and were calibrated with CDCl$_3$ or [d]$_6$-DMSO. High-resolution mass spectra (HRMS) were equipped with an ESI source and a TOF detector. Column chromatography was performed on silica gel (70–230 mesh ASTM) using the reported eluents. Thin-layer chromatography (TLC) was carried out on 4×15 cm plates with a layer thickness of 0.2 mm (silica gel 60 F254).

Aniline compounds 1a-j1, 1a2 and 1k3, and sulfonyl azides 2b-m4 were prepared according to the known procedures.

2. The Representative procedure for the synthesis of compounds 3

A flame-dried sealed tube was cooled to ambient temperature and filled with N$_2$. To this flask were added N-(o-tolyl)pyrimidin-2-amine (1a) (92.5 mg, 0.5 mmol), para-toluenesulfonyl azide (2a) (118.2 mg, 0.6 mmol), [IrCl$_2$Cp*]$_2$ (2.0 mg, 0.0025 mmol), AgSbF$_6$ (3.5 mg, 0.01 mmol) and 1,2-DCE (2.0 mL). Then the sealed tube was heated at 80 °C. After 12 h, the reaction mixture was cooled to ambient temperature, filtered through a pad of celite and silica gel, and washed with EtOAc (3 x 10 mL). The solvents were removed under reduced pressure. The residue was purified by silica gel column chromatography (PE/EtOAc/DCM = 10:1:1→5:1:1) to afford the desired
product 3aa (175 mg, 99%) as a white solid.

3. Preparation and characterization of compounds 3

\[
\text{Synthesis of } 4\text{-methyl-}N\{3\text{-methyl-2-(pyrimidin-2-ylamino)phenyl}\text{benzenesulfonamide (3aa):}\n\]

The representative procedure was followed using \(N\)-(o-tolyl)pyrimidin-2-amine (1a) (92.5 mg, 0.5 mmol) and para-toluenesulfonyl azide (2a) (118 mg, 0.6 mmol). After 12 h, purification by column chromatography on silica gel (PE/EtOAc/DCM = 10:1:1→5:1:1) to afford the desired product 3aa (175 mg, 99%) as a white solid.

M. p. = 181–182 °C.

\(^1\)H-NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.29 \ (d, J = 4.8 \ \text{Hz}, 2\ H), 7.94 \ (\text{br s, } 1H), 7.57 \ (d, J = 8.1 \ \text{Hz}, 2H), 7.44 \ (d, J = 8.1 \ \text{Hz}, 1H), 7.21–7.15 \ (m, 3H), 7.07 \ (d, J = 7.5 \ \text{Hz}, 1H), 6.71 \ (t, J = 4.8 \ \text{Hz}, 1H), 6.70 \ (\text{br s, } 1H), 2.38 \ (\text{s, } 3H), 2.18 \ (\text{s, } 3H)\).

\(^1\)C-NMR (100 MHz, CDCl\(_3\)): \(\delta = 160.9 \ (C_q), 158.6 \ (CH), 143.5 \ (C_q), 137.0 \ (C_q), 135.3 \ (C_q), 133.5 \ (C_q), 130.1 \ (C_q), 129.4 \ (CH), 127.9 \ (CH), 127.3 \ (CH), 127.1 \ (CH), 122.3 \ (CH), 112.6 \ (CH), 21.5 \ (CH_3), 18.5 \ (CH_3)\).

HRMS (ESI) m/z calcd for C\(_{18}\)H\(_{18}\)N\(_4\)O\(_2\)S [M + H]\(^+\): 355.1229, Found 355.1228.

\[
\text{Synthesis of } N\{3\text{-methoxy-2-(pyrimidin-2-ylamino)phenyl}\text{-4-methylbenzenesulfonamide (3ba):}\n\]
The representative procedure was followed using N-(2-methoxyphenyl)pyrimidin-2-amine (1b) (100.5 mg, 0.5 mmol) and para-toluenesulfonyl azide (2a) (118.2 mg, 0.6 mmol). After 12 h, purification by column chromatography on silica gel (PE/EtOAc/DCM = 10:1:1→5:1:1) to afford the desired product 3ba (180 mg, 97%) as a white solid.

M. p. = 188–189 °C.

1H-NMR (400 MHz, CDCl$_3$): δ = 9.33 (br s, 1H), 8.39 (d, $J = 4.8$ Hz, 2H), 7.48 (d, $J = 8.2$ Hz, 2H), 7.24 (d, $J = 8.2$ Hz, 1H), 7.18–7.11 (m, 3H), 6.82 (br s, 1H), 6.79–6.73 (m, 2H), 3.80 (s, 3H), 2.37 (s, 3H).

13C-NMR (100 MHz, CDCl$_3$): δ = 160.7 (C$_q$), 158.4 (CH), 152.3 (C$_q$), 143.2 (C$_q$), 137.4 (C$_q$), 131.6 (C$_q$), 129.3 (CH), 126.9 (CH), 125.8 (CH), 122.5 (C$_q$), 118.8 (CH), 112.7 (CH), 108.1 (CH), 55.9 (CH$_3$), 21.5 (CH$_3$).

HRMS (ESI) m/z calcd for C$_{18}$H$_{19}$N$_4$O$_3$S [M + H]$^+$: 371.1178, Found 371.1178.

Synthesis of 4-methyl-N-{2-(pyrimidin-2-ylamino)-3-(trifluoromethyl)phenyl}benzenesulfonamide (3ca):

The representative procedure was followed using N-{2-(trifluoromethyl)phenyl}pyrimidin-2-amine (1c) (119.5 mg, 0.5 mmol) and para-toluenesulfonyl azide (2a) (118.2 mg, 0.6 mmol). After 12 h, purification by column chromatography on silica gel (PE/EtOAc/DCM = 10:1:1→5:1:1) to afford the desired product 3ca (192 mg, 94%) as a white solid.

M. p. = 197–198 °C.

1H-NMR (400 MHz, CDCl$_3$): δ = 8.35 (d, $J = 4.8$ Hz, 2H), 7.97 (br s, 1H), 7.90 (d, $J = 8.0$ Hz, 1H), 7.51 (d, $J = 8.0$ Hz, 2H), 7.51 (d, $J = 8.0$ Hz, 1H), 7.40 (dd, $J = 8.0, 8.0$ Hz, 1H), 7.20 (d, $J = 8.0$ Hz, 2H), 6.81 (t, $J = 4.8$ Hz, 1H), 6.58 (br s, 1H), 2.40 (s, 3H).

13C-NMR (100 MHz, CDCl$_3$): δ = 160.4 (C$_q$), 158.7 (CH), 143.9 (C$_q$), 136.6 (C$_q$), 135.3 (C$_q$), 129.5 (CH), 129.1 (CH), 127.2 (CH), 127.0 (CH), 126.7 (q, 3J$_{C-F} = 29$ Hz, C$_q$), 123.6 (q, 3J$_{C-F} = 276$ Hz, C$_q$), 123.6 (q, 3J$_{C-F} = 5$ Hz, CH), 113.6 (CH), 21.5 (CH$_3$) (One C$_q$ is invisible).
Synthesis of N-[3-chloro-2-(pyrimidin-2-ylamino)phenyl]-4-methylbenzenesulfonamide (3da):

The representative procedure was followed using N-(2-chlorophenyl)pyrimidin-2-amine (1d) (102.5 mg, 0.5 mmol), *para*-toluenesulfonyl azide (2a) (118.2 mg, 0.6 mmol), [IrCl₂Cp*]₂ (4.0 mg, 0.005 mmol) and AgSbF₆ (6.9 mg, 0.02 mmol). After 12 h, purification by column chromatography on silica gel (PE/EtOAc/DCM = 10:1:1→5:1:1) to afford the desired product 3da (184 mg, 98%) as a white solid.

M. p. = 203–204 °C.

1H-NMR (400 MHz, CDCl₃): δ = 8.57 (br s, 1H), 8.39 (d, *J* = 8.39 (d, *J* = 4.8 Hz, 2H), 7.59 (d, *J* = 8.0 Hz, 1H), 7.50 (d, *J* = 8.2 Hz, 2H), 7.28 (d, *J* = 7.6 Hz, 1H), 7.20 (dd, *J* = 8.0, 7.6 Hz, 1H), 7.17 (d, *J* = 8.2 Hz, 2H), 6.85 (br s, 1H), 6.83 (t, *J* = 4.9 Hz, 1H), 2.38 (s, 3H).

13C-NMR (100 MHz, CDCl₃): δ = 160.4 (Cₖ), 158.6 (CH), 143.6 (Cₗ), 136.9 (Cₖ), 133.8 (Cₗ), 130.0 (Cₖ), 129.7 (Cₗ), 129.4 (CH), 127.0 (CH), 126.9 (CH), 126.9 (CH), 124.6 (CH), 113.4 (CH), 21.5 (CH₃).

Synthesis of 4-methyl-N-[2-(pyrimidin-2-ylamino)phenyl]benzenesulfonamide (3ea):

The representative procedure was followed using N-phenylpyrimidin-2-amine (1e) (128.2 mg, 0.75 mmol), *para*-toluenesulfonyl azide (2a) (98.5 mg, 0.5 mmol), [IrCl₂Cp*]₂ (4.0 mg, 0.005 mmol) and AgSbF₆ (6.9 mg, 0.02 mmol). After 12 h, purification by column chromatography on
silica gel (PE/EtOAc/DCM = 10:1:1→5:1:1) to afford the desired product 3ea (115 mg, 68%) as a white solid.

M. p. = 209–210 °C.

1H-NMR (400 MHz, CDCl₃): δ = 8.37 (d, J = 4.8 Hz, 2H), 8.03 (br s, 1H), 7.51 (d, J = 8.2 Hz, 2H), 7.45 (d, J = 7.8 Hz, 1H), 7.44 (br s, 1H), 7.35 (d, J = 7.8 Hz, 1H), 7.23 (dd, J = 7.8, 7.5 Hz, 1H), 7.18-7.11 (m, 3H), 6.76 (t, J = 4.8 Hz, 1H), 2.33 (s, 3H).

13C-NMR (100 MHz, CDCl₃): δ = 160.2 (Cₗ), 158.3 (CH), 143.5 (Cₗ), 136.7 (Cₗ), 134.2 (Cₗ), 129.4 (CH), 129.3 (Cₗ), 127.8 (CH), 127.5 (CH), 127.1 (CH), 125.5 (CH), 123.8 (CH), 112.7 (CH), 21.5 (CH₃).

Synthesis of N-{5-chloro-2-(pyrimidin-2-ylamino)phenyl}-4-methylbenzenesulfonamide (3fa):
The representative procedure was followed using N-(4-chlorophenyl)pyrimidin-2-amine (1f) (153.8 mg, 0.75 mmol), para-toluenesulfonyl azide (2a) (98.5 mg, 0.5 mmol), [IrCl₂Cp*]₂ (4.0 mg, 0.005 mmol) and AgSbF₆ (6.9 mg, 0.02 mmol). After 12 h, purification by column chromatography on silica gel (PE/EtOAc/DCM = 10:1:1→5:1:1) to afford the desired product 3fa (130 mg, 69%) as a white solid.

M. p. = 223–224 °C.

1H-NMR (400 MHz, [d]₆-DMSO): δ = 9.80 (br s, 1H), 8.55 (br s, 1H), 8.37 (d, J = 4.8 Hz, 2H), 7.84 (d, J = 8.8 Hz, 1H), 7.44 (d, J = 8.2 Hz, 2H), 7.26 (dd, J = 8.8, 2.4 Hz, 1H), 7.13–7.07 (m, 3H), 6.85 (t, J = 4.8 Hz, 1H), 2.20 (s, 3H).

13C-NMR (100 MHz, [d]₆-DMSO): δ = 159.9 (Cₗ), 158.4 (CH), 143.7 (Cₗ), 136.5 (Cₗ), 134.1 (Cₗ), 129.9 (CH), 128.6 (Cₗ), 127.0 (CH), 127.0 (CH), 126.7 (Cₗ), 125.4 (CH), 113.6 (CH), 21.5 (CH₃)
(One CH is invisible).

Synthesis of N-{5-bromo-2-(pyrimidin-2-ylamino)phenyl}-4-methylbenzenesulfonamide (3ga):

The representative procedure was followed using N-(4-bromophenyl)pyrimidin-2-amine (1g) (187.5 mg, 0.75 mmol), para-toluenesulfonyl azide (2a) (98.5 mg, 0.5 mmol), [IrCl$_2$Cp*]$_2$ (4.0 mg, 0.005 mmol) and AgSbF$_6$ (6.9 mg, 0.02 mmol). After 12 h, purification by column chromatography on silica gel (PE/EtOAc/DCM = 10:1:1→5:1:1) to afford the desired product 3ga (180 mg, 86%) as a white solid.

M. p. = 220–221 °C.

1H-NMR (400 MHz, [d]$_6$-DMSO): $\delta = 9.80$ (br s, 1H), 8.55 (br s, 1H), 8.37 (d, $J = 4.8$ Hz, 2H), 7.81 (d, $J = 8.8$ Hz, 1H), 7.45 (d, $J = 8.0$ Hz, 2H), 7.37 (dd, $J = 8.8$, 2.2 Hz, 1H), 7.21 (d, $J = 2.2$ Hz, 1H), 7.10 (d, $J = 8.0$ Hz, 2H), 6.84 (t, $J = 4.8$ Hz, 1H), 2.19 (s, 3H).

13C-NMR (100 MHz, [d]$_6$-DMSO): $\delta = 159.8$ (C$_q$), 158.4 (CH), 143.7 (C$_q$), 136.5 (C$_q$), 134.6 (C$_q$), 130.0 (CH), 130.0 (CH), 129.8 (CH), 128.7 (C$_q$), 127.0 (CH), 125.5 (CH), 114.3 (C$_q$), 113.7 (CH), 21.5 (CH$_3$).

HRMS (ESI) m/z calcd for C$_{17}$H$_{16}$BrN$_4$O$_2$S [M + H]$^+$: 419.0177, Found 419.0173.

Synthesis of N-{5-iodo-2-(pyrimidin-2-ylamino)phenyl}-4-methylbenzenesulfonamide (3ha):

The representative procedure was followed using N-(4-iodophenyl)pyrimidin-2-amine (1h) (222.7 mg, 0.75 mmol), para-toluenesulfonyl azide (2a) (98.5 mg, 0.5 mmol), [IrCl$_2$Cp*]$_2$ (4.0 mg, 0.005 mmol) and AgSbF$_6$ (6.9 mg, 0.02 mmol). After 12 h, purification by column chromatography on silica gel (PE/EtOAc/DCM = 10:1:1→5:1:1) to afford the desired product 3ha (198 mg, 85%) as a
yellow solid.

M. p. = 205–206 °C.

\(^1\)H-NMR (400 MHz, [d]_6-DMSO): \(\delta = 9.73 \text{ (br s, 1H)}, 8.51 \text{ (br s, 1H)}, 8.38 \text{ (d, } J = 4.8 \text{ Hz, 2H}), 7.70 \text{ (d, } J = 8.7 \text{ Hz, 1H)}, 7.52 \text{ (dd, } J = 8.7, 1.7 \text{ Hz, 1H}), 7.44 \text{ (d, } J = 8.1 \text{ Hz, 2H}), 7.31 \text{ (s, 1H)}, 7.12 \text{ (d, } J = 8.1 \text{ Hz, 2H}), 6.85 \text{ (t, } J = 4.8 \text{ Hz, 1H}), 2.21 \text{ (s, 3H)}.

\(^1^3\)C-NMR (100 MHz, [d]_6-DMSO): \(\delta = 159.7 \text{ (C}_q\text{)}, 158.4 \text{ (CH)}, 143.7 \text{ (C}_q\text{)}, 136.5 \text{ (C}_q\text{)}, 136.1 \text{ (CH)}, 135.9 \text{ (CH)}, 135.4 \text{ (C}_q\text{)}, 129.8 \text{ (CH)}, 128.5 \text{ (C}_q\text{)}, 127.1 \text{ (CH)}, 125.5 \text{ (CH)}, 113.7 \text{ (CH)}, 85.8 \text{ (C}_q\text{)}, 21.5 \text{ (CH}_3\text{)}.

HRMS (ESI) m/z calcd for C\(_{17}\)H\(_{16}\)N\(_4\)O\(_2\)S [M + H]\(^+\): 467.0039, Found 467.0037.

![Chemical Structure](image)

Synthesis of 4-methyl-N-[2-(pyrimidin-2-ylamino)-5-(trifluoromethyl)phenyl]benzenesulfonamide (3ia):

The representative procedure was followed using N-[4-(trifluoromethyl)phenyl]pyrimidin-2-amine (1i) (179.2 mg, 0.75 mmol), para-toluenesulfonyl azide (2a) (98.5 mg, 0.5 mmol), [IrCl\(_2\)Cp\(*\)]\(_2\) (4.0 mg, 0.005 mmol) and AgSbF\(_6\) (6.9 mg, 0.02 mmol). After 12 h, purification by column chromatography on silica gel (PE/EtOAc/DCM = 10:1:1→5:1:1) to afford the desired product 3ia (149 mg, 73%) as a yellow solid.

M. p. = 199–200 °C.

\(^1\)H-NMR (400 MHz, [d]_6-DMSO): \(\delta = 9.90 \text{ (br s, 1H)}, 8.73 \text{ (br s, 1H)}, 8.46 \text{ (d, } J = 4.6 \text{ Hz, 2H}), 8.22 \text{ (d, } J = 8.0 \text{ Hz, 1H}), 7.57 \text{ (d, } J = 8.0 \text{ Hz, 1H}), 7.44 \text{ (d, } J = 8.0 \text{ Hz, 2H}), 7.22 \text{ (s, 1H)}, 7.14 \text{ (d, } J = 8.0 \text{ Hz, 2H}), 6.95 \text{ (t, } J = 4.6 \text{ Hz, 1H}), 2.20 \text{ (s, 3H)}.

\(^1^3\)C-NMR (100 MHz, [d]_6-DMSO): \(\delta = 159.4 \text{ (C}_q\text{)}, 158.6 \text{ (CH)}, 143.9 \text{ (C}_q\text{)}, 139.3 \text{ (C}_q\text{)}, 136.2 \text{ (C}_q\text{)}, 129.9 \text{ (CH)}, 127.1 \text{ (CH)}, 126.5 \text{ (C}_q\text{)}, 124.9 \text{ (q, } \frac{\beta}{\gamma}J_{C-F} = 4 \text{ Hz, CH}), 124.5 \text{ (q, } \frac{\beta}{\gamma}J_{C-F} = 4 \text{ Hz, CH}), 124.2 \text{ (q, } \frac{\beta}{\gamma}J_{C-F} = 259 \text{ Hz, C}_q\text{)}, 122.8 \text{ (CH)}, 122.7 \text{ (q, } \frac{\beta}{\gamma}J_{C-F} = 28 \text{ Hz, C}_q\text{)}, 114.4 \text{ (CH)}, 21.4 \text{ (CH}_3\text{)}.

\(^1^9\)F-NMR (376 MHz, [d]_6-DMSO): \(\delta = -60.6 \text{ (s)}\).
Synthesis of 4-methyl-N-{4-methyl-2-(pyrimidin-2-ylamino)phenyl}benzenesulfonamide (3ja):
The representative procedure was followed using N-(m-tolyl)pyrimidin-2-amine (1j) (92.5 mg, 0.5 mmol), para-toluenesulfonyl azide (2a) (118.2 mg, 0.6 mmol), [IrCl₂Cp*]₂ (4.0 mg, 0.005 mmol) and AgSbF₆ (6.9 mg, 0.02 mmol). After 12 h, purification by column chromatography on silica gel (PE/EtOAc/DCM = 10:1:1→5:1:1) to afford the desired product 3ja (156 mg, 88%) as a white solid.
M. p. = 209–210 °C.

1H-NMR (400 MHz, CDCl₃): δ = 8.36 (d, J = 4.8 Hz, 2H), 7.90 (br s, 1H), 7.50 (d, J = 8.1 Hz, 2H), 7.35 (br s, 1H), 7.28 (d, J = 8.0 Hz, 1H), 7.20 (d, J = 8.0 Hz, 1H), 7.15 (d, J = 8.1 Hz, 2H), 6.94 (d, J = 7.8 Hz, 1H), 6.74 (t, J = 4.8 Hz, 1H), 2.34 (s, 3H), 2.33 (s, 3H).

13C-NMR (100 MHz, CDCl₃): δ = 160.1 (Cₜₚ), 158.3 (CH), 143.4 (Cₚₜ), 137.8 (Cₚₚ), 136.7 (Cₚₚ), 134.2 (Cₚₚ), 129.4 (CH), 128.1 (CH), 127.2 (CH), 126.4 (Cₚₚ), 126.2 (CH), 124.1 (CH), 112.6 (CH), 21.5 (CH₃), 21.1 (CH₃).

Synthesis of N-{3-methyl-2-(pyrimidin-2-ylamino)phenyl}benzenesulfonamide (3ab):
The representative procedure was followed using N-(o-tolyl)pyrimidin-2-amine (1a) (92.5 mg, 0.5 mmol) and benzenesulfonyl azide (2b) (109.8 mg, 0.6 mmol). After 12 h, purification by column chromatography on silica gel (PE/EtOAc/DCM = 10:1:1→5:1:1) to afford the desired product 3ab
Synthesis of 4-methoxy-\(N\)-(3-methyl-2-(pyrimidin-2-ylamino)phenyl)benzenesulfonamide (3ac):
The representative procedure was followed using \(N\)-(o-tolyl)pyrimidin-2-amine (1a) (92.5 mg, 0.5 mmol) and 4-methoxybenzenesulfonyl azide (2c) (127.8 mg, 0.6 mmol). After 12 h, purification by column chromatography on silica gel (PE/EtOAc/DCM = 10:1:1→5:1:1) to afford the desired product 3ac (183 mg, 99%) as a white solid.
M. p. = 194–195 °C.
\(^1\)H-NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.29 \text{ (d, } J = 4.8 \text{ Hz, 2H), 7.89 \text{ (br s, 1H), 7.61 \text{ (d, } J = 8.8 \text{ Hz, 2H), 7.44 \text{ (d, } J = 8.0 \text{ Hz, 1H), 7.17 \text{ (dd, } J = 8.0, 7.7 \text{ Hz, 1H), 7.07 \text{ (d, } J = 7.7 \text{ Hz, 1H), 6.85 \text{ (d, } J = 8.8 \text{ Hz, 2H), 6.74 \text{ (br s, 1H), 6.70 \text{ (t, } J = 4.8 \text{ Hz, 1H), 3.82 \text{ (s, 3H), 2.18 \text{ (s, 3H).}}}
\(^{13}\)C-NMR (100 MHz, CDCl\(_3\)): \(\delta = 162.9 \text{ (C\(_q\)), 161.0 \text{ (C\(_q\)), 158.6 \text{ (CH), 135.3 \text{ (C\(_q\)), 133.6 \text{ (C\(_q\)), 131.5 \text{ (C\(_q\)), 130.1 \text{ (C\(_q\)), 129.2 \text{ (CH), 127.9 \text{ (CH), 127.3 \text{ (CH), 122.3 \text{ (CH), 114.0 \text{ (CH), 112.6 \text{ (CH), 55.5 \text{ (CH\(_3\))}, 18.6 \text{ (CH\(_3\))}}.}}
\text{HRMS (ESI) m/z calcd for C}_{18}\text{H}_{19}\text{N}_4\text{O}_{3}\text{S} [M + H]^+: 371.1178, Found 371.1177.}{
Synthesis of 4-fluoro-N-{3-methyl-2-(pyrimidin-2-ylamino)phenyl}benzenesulfonamide (3ad):
The representative procedure was followed using N-(o-tolyl)pyrimidin-2-amine (1a) (92.5 mg, 0.5 mmol) and 4-fluorobenzenesulfonyl azide (2d) (120.6 mg, 0.6 mmol). After 12 h, purification by column chromatography on silica gel (PE/EtOAc/DCM = 10:1:1→5:1:1) to afford the desired product 3ad (177 mg, 99%) as a white solid.
M. p. = 213–214 °C.

1H-NMR (400 MHz, [d]6-DMSO): \(\delta = 9.55 \) (br s, 1H), 8.34 (br s, 1H), 8.21 (d, \(J = 4.8 \) Hz, 2H), 7.63 (dd, \(J = 8.2, 7.4 \) Hz, 2H), 7.19 (dd, \(J = 7.8, 7.8 \) Hz, 1H), 7.15–7.01 (m, 4H), 6.68 (t, \(J = 4.8 \) Hz, 1H), 3.47 (s, 3H).

13C-NMR (100 MHz, [d]6-DMSO): \(\delta = 164.7 \) (d, \(1J_{C-F} = 251 \) Hz, Cq), 161.1 (Cq), 158.3 (CH), 137.8 (Cq), 136.5 (d, \(1J_{C-F} = 3 \) Hz, Cq), 132.9 (Cq), 131.9 (Cq), 129.9 (d, \(3J_{C-F} = 10 \) Hz, CH), 128.3 (CH), 126.5 (CH), 122.7 (CH), 116.6 (d, \(2J_{C-F} = 22 \) Hz, CH), 112.1 (CH), 19.0 (CH3).

19F-NMR (376 MHz, [d]6-DMSO): \(\delta = -106.3 \) (s).

Synthesis of 4-chloro-N-{3-methyl-2-(pyrimidin-2-ylamino)phenyl}benzenesulfonamide (3ae):
The representative procedure was followed using N-(o-tolyl)pyrimidin-2-amine (1a) (92.5 mg, 0.5 mmol) and 4-chlorobenzenesulfonyl azide (2e) (130.2 mg, 0.6 mmol). After 12 h, purification by column chromatography on silica gel (PE/EtOAc/DCM = 10:1:1→5:1:1) to afford the desired product 3ae (185 mg, 99%) as a white solid.
M. p. = 205–206 °C.
H-NMR (400 MHz, [d]$_6$-DMSO): $\delta = 9.60$ (br s, 1H), 8.31 (br s, 1H), 8.19 (d, $J = 4.8$ Hz, 2H), 7.53 (d, $J = 8.4$ Hz, 2H), 7.32 (d, $J = 8.4$ Hz, 2H), 7.19 (d, $J = 7.8$ Hz, 1H), 7.11 (dd, $J = 7.8$, 7.6 Hz, 1H), 7.06 (d, $J = 7.6$ Hz, 1H), 6.69 (t, $J = 4.8$ Hz, 1H), 2.00 (s, 3H).

C-NMR (100 MHz, [d]$_6$-DMSO): $\delta = 161.0$ (C$_q$), 158.3 (CH), 138.9 (C$_q$), 137.9 (C$_q$), 137.8 (C$_q$), 132.7 (C$_q$), 132.0 (C$_q$), 129.5 (CH), 128.7 (CH), 128.4 (CH), 126.5 (CH), 122.9 (CH), 112.1 (CH), 19.0 (CH$_3$).

HRMS (ESI) m/z calcd for C$_{17}$H$_{16}$ClN$_5$O$_2$S [M + H]$^+$: 375.0682, Found 375.0683.

Synthesis of N-[3-methyl-2-(pyrimidin-2-ylamino)phenyl]-4-nitrobenzenesulfonamide (3af):

The representative procedure was followed using N-(o-tolyl)pyrimidin-2-amine (1a) (92.5 mg, 0.5 mmol) and 4-nitrobenzenesulfonyl azide (2f) (136.8 mg, 0.6 mmol). After 12 h, purification by column chromatography on silica gel (PE/EtOAc/DCM = 10:1:1\rightarrow5:1:1) to afford the desired product 3af (190 mg, 98%) as a pale yellow solid.

M. p. = 234–235 °C.

H-NMR (400 MHz, [d]$_6$-DMSO): $\delta = 9.82$ (br s, 1H), 8.26 (br s, 1H), 8.10 (d, $J = 4.8$ Hz, 2H), 8.06 (d, $J = 8.8$ Hz, 2H), 7.74 (d, $J = 8.8$ Hz, 2H), 7.24 (d, $J = 7.8$ Hz, 1H), 7.15 (dd, $J = 7.8$, 7.5 Hz, 1H), 7.10 (d, $J = 7.5$ Hz, 1H), 6.54 (t, $J = 4.8$ Hz, 1H), 1.96 (s, 3H).

C-NMR (100 MHz, [d]$_6$-DMSO): $\delta = 160.9$ (C$_q$), 158.2 (CH), 149.6 (C$_q$), 145.6 (C$_q$), 137.7 (C$_q$), 132.4 (C$_q$), 132.1 (C$_q$), 129.1 (CH), 128.3 (CH), 126.5 (CH), 124.8 (CH), 124.1 (CH), 112.0 (CH), 19.0 (CH$_3$).

HRMS (ESI) m/z calcd for C$_{17}$H$_{16}$N$_5$O$_2$S [M + H]$^+$: 386.0923, Found 386.0921.
Synthesis of 3-methyl-N-[3-methyl-2-(pyrimidin-2-ylamino)phenyl]benzenesulfonamide (3ag):
The representative procedure was followed using N-(o-tolyl)pyrimidin-2-amine (1a) (92.5 mg, 0.5 mmol) and 3-methylbenzenesulfonyl azide (2g) (118.2 mg, 0.6 mmol). After 12 h, purification by column chromatography on silica gel (PE/EtOAc/DCM = 10:1:1→5:1:1) to afford the desired product 3ag (170 mg, 96%) as a white solid.
M. p. = 176−177 °C.

1H-NMR (400 MHz, CDCl$_3$): δ = 8.33 (d, J = 4.8 Hz, 2H), 7.98 (br s, 1H), 7.49−7.41 (m, 3H), 7.34 (d, J = 7.2 Hz, 1H), 7.28 (d, J = 7.2 Hz, 1H), 7.19 (dd, J = 7.6, 7.6 Hz, 1H), 7.09 (d, J = 7.6 Hz, 1H), 6.72 (t, J = 4.8 Hz, 1H), 6.41 (br s, 1H), 2.33 (s, 3H), 2.18 (s, 3H).

13C-NMR (100 MHz, CDCl$_3$): δ = 160.8 (C$_q$), 158.6 (CH), 139.8 (C$_q$), 139.0 (C$_q$), 134.9 (C$_q$), 133.5 (CH), 133.2 (C$_q$), 130.5 (C$_q$), 128.6 (CH), 128.2 (CH), 127.4 (CH), 127.2 (CH), 124.2 (CH), 123.2 (CH), 112.6 (CH), 21.3 (CH$_3$), 18.5 (CH$_3$).
HRMS (ESI) m/z calcd for C$_{18}$H$_{19}$N$_4$O$_2$S [M + H]$^+$: 355.1229, Found 355.1230.

Synthesis of 3-fluoro-N-[3-methyl-2-(pyrimidin-2-ylamino)phenyl]benzenesulfonamide (3ah):
The representative procedure was followed using N-(o-tolyl)pyrimidin-2-amine (1a) (92.5 mg, 0.5 mmol) and 3-fluorobenzenesulfonyl azide (2h) (120.6 mg, 0.6 mmol). After 12 h, purification by column chromatography on silica gel (PE/EtOAc/DCM = 10:1:1→5:1:1) to afford the desired product 3ah (138 mg, 77%) as a white solid.
M. p. = 192−193 °C.

1H-NMR (400 MHz, CDCl$_3$): δ = 8.33 (d, J = 4.8 Hz, 2H), 8.23 (br s, 1H), 7.45 (d, J = 7.2 Hz, 1H), 7.45 (d, J = 7.2 Hz, 1H), 7.39 (dd, J = 7.8, 7.8 Hz, 1H), 7.34 (d, J = 6.8 Hz, 1H), 7.23 (dd, J = 7.7, 7.5 Hz, 1H), 7.19 (d, J = 7.8 Hz, 1H), 7.11 (d, J = 7.5 Hz, 1H), 6.75 (t, J = 4.8 Hz, 1H), 6.57 (br s, 1H), 2.20 (s, 3H).

13C-NMR (100 MHz, CDCl$_3$): δ = 162.1 (d, 1J$_{C-F}$ = 251 Hz, C$_q$), 160.7 (C$_q$), 158.6 (CH), 142.1 (d,
$^3J_{C-F} = 7$ Hz, C_q, 134.7 (C_q), 132.6 (C_q), 130.6 (C_q), 130.5 (d, $^3J_{C-F} = 7$ Hz, CH), 128.5 (CH), 127.2 (CH), 123.3 (CH), 122.8 (d, $^4J_{C-F} = 3$ Hz, CH), 119.9 (d, $^2J_{C-F} = 21$ Hz, CH), 114.4 (d, $^2J_{C-F} = 24$ H, CH), 112.8 (CH), 18.5 (CH$_3$).

19F-NMR (376 MHz, CDCl$_3$): $\delta = -(119.7–110.0)$ (m).

HRMS (ESI) m/z calcd for C$_{17}$H$_{16}$FN$_4$O$_2$S [M + H]$^+$: 359.0978, Found 359.0978.

Synthesis of 3-chloro-N-{3-methyl-2-(pyrimidin-2-ylamino)phenyl}benzenesulfonamide (3ai):

The representative procedure was followed using N-(o-tolyl)pyrimidin-2-amine (1a) (92.5 mg, 0.5 mmol) and 3-chlorobenzenesulfonyl azide (2i) (130.5 mg, 0.6 mmol). After 12 h, purification by column chromatography on silica gel (PE/EtOAc/DCM = 10:1:1→5:1:1) to afford the desired product 3ai (186 mg, 99%) as a white solid.

M. p. = 183–184 °C.

1H-NMR (400 MHz, CDCl$_3$): $\delta = 8.34$ (d, $J = 4.8$ Hz, 2H), 8.27 (s, 1H), 7.60 (br s, 1H), 7.53 (d, $J = 7.8$ Hz, 1H), 7.49 (d, $J = 7.9$, 1H), 7.45 (d, $J = 7.9$, 1H), 7.33 (d, $J = 7.9$, 7.9 Hz, 1H), 7.21 (dd, $J = 7.8$, 7.8 Hz, 1H), 7.12 (d, $J = 7.8$ Hz, 1H), 6.76 (t, $J = 4.8$ Hz, 1H), 6.53 (br s, 1H), 2.21 (s, 3H).

13C-NMR (100 MHz, CDCl$_3$): $\delta = 160.6$ (C_q), 158.6 (CH), 141.8 (C_q), 135.0 (C_q), 134.6 (C_q), 132.8 (CH), 132.5 (C_q), 130.8 (C_q), 130.0 (CH), 128.6 (CH), 127.1 (CH), 127.0 (CH), 125.1 (CH), 123.6 (CH), 112.8 (CH), 18.5 (CH$_3$).

HRMS (ESI) m/z calcd for C$_{17}$H$_{16}$ClN$_4$O$_2$S [M + H]$^+$: 375.0682, Found 375.0681.

Synthesis of 2-methyl-N-{3-methyl-2-(pyrimidin-2-ylamino)phenyl}benzenesulfonamide (3aj):
The representative procedure was followed using N-(o-tolyl)pyrimidin-2-amine (1a) (92.5 mg, 0.5 mmol) and 2-methylbenzenesulfonyl azide (2j) (118.2 mg, 0.6 mmol). After 12 h, purification by column chromatography on silica gel (PE/EtOAc/DCM = 10:1:1→5:1:1) to afford the desired product 3aj (175 mg, 99%) as a white solid.

M. p. = 164–165 °C.

1H-NMR (400 MHz, CDCl₃): δ = 8.35 (d, J = 4.8 Hz, 2H), 8.03 (br s, 1H), 7.87 (d, J = 7.8 Hz, 1H), 7.42 (dd, J = 7.4, 7.4 Hz, 1H), 7.30 (d, J = 7.8 Hz, 1H), 7.24 (d, J = 7.8 Hz, 1H), 7.23 (dd, J = 7.8, 7.8 Hz, 1H), 7.13 (dd, J = 7.8, 7.8 Hz, 1H), 7.05 (d, J = 7.4 Hz, 1H), 6.74 (t, J = 4.8 Hz, 1H), 6.68 (br s, 1H), 2.46 (s, 3H), 2.19 (s, 3H).

13C-NMR (100 MHz, CDCl₃): δ = 161.1 (Cₐ), 158.6 (CH), 138.2 (Cₐ), 137.3 (Cₐ), 135.1 (Cₐ), 133.5 (Cₐ), 132.8 (CH), 132.5 (CH), 129.8 (Cₐ), 129.5 (CH), 127.7 (CH), 127.2 (CH), 126.1 (CH), 121.8 (CH), 112.7 (CH), 20.2 (CH₃), 18.5 (CH₃).

Synthesis of 2-fluoro-N-[3-methyl-2-(pyrimidin-2-ylamino)phenyl]benzenesulfonamide (3ak):
The representative procedure was followed using N-(o-tolyl)pyrimidin-2-amine (1a) (92.5 mg, 0.5 mmol) and 2-fluorobenzenesulfonyl azide (2k) (120.6 mg, 0.6 mmol). After 12 h, purification by column chromatography on silica gel (PE/EtOAc/DCM = 10:1:1→5:1:1) to afford the desired product 3ak (171 mg, 95%) as a white solid.

M. p. = 161–162 °C.

1H-NMR (400 MHz, CDCl₃): δ = 8.50 (br s, 1H), 8.33 (d, J = 4.8 Hz, 2H), 7.78 (dd, J = 7.8, 7.8 Hz, 1H), 7.51 (dd, J = 8.0, 8.0 Hz, 1H), 7.44 (d, J = 8.0 Hz, 1H), 7.17 (ddd, J = 7.8, 7.8, 2.0 Hz, 1H), 7.10 (d, J = 8.0 Hz, 1H), 7.09 (dd, J = 7.8, 4.5 Hz, 2H), 6.92 (br s, 1H), 6.75 (t, J = 4.8 Hz, 1H), 2.20 (s, 3H).

13C-NMR (100 MHz, CDCl₃): δ = 160.9 (Cₐ), 159.2 (d, 1J_C-F = 255 Hz, Cₐ), 158.6 (CH), 135.0 (d, 3J_C-F = 8 Hz, CH), 134.8 (Cₐ), 132.7 (Cₐ), 130.5 (Cₐ), 130.4 (CH), 128.3 (CH), 128.3 (d, 3J_C-F =
Synthesis of \(N\)-\{3-methyl-2-(pyrimidin-2-ylamino)phenyl\}-1-phenylmethanesulfonamide (3al):

The representative procedure was followed using \(N\)-(o-toly)pyrimidin-2-amine (1a) (92.5 mg, 0.5 mmol) and phenylmethanesulfonyl azide (2l) (118.2 mg, 0.6 mmol). After 12 h, purification by column chromatography on silica gel (PE/EtOAc/DCM = 10:1:1→5:1:1) to afford the desired product 3al (100 mg, 57%) as a white solid.

M. p. = 174−175 °C.

\(^1\)H-NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.19 \) (br s, 1H), 8.16 (d, \(J = 4.8 \) Hz, 2H), 7.51 (d, \(J = 8.0 \) Hz, 1H), 7.32−7.28 (m, 5H), 7.25 (dd, \(J = 8.0, 7.8 \) Hz, 1H), 7.12 (d, \(J = 7.6 \) Hz, 1H), 6.58 (t, \(J = 4.8 \) Hz, 1H), 6.52 (br s, 1H), 4.38 (s, 2H), 2.24 (s, 3H).

\(^13\)C-NMR (100 MHz, CDCl\(_3\)): \(\delta = 161.1 \) (C\(_q\)), 158.3 (CH), 136.3 (C\(_q\)), 134.7 (C\(_q\)), 130.8 (CH), 128.8 (C\(_q\)), 128.8 (CH), 128.7 (CH), 128.6 (C\(_q\)), 127.8 (CH), 127.0 (CH), 119.4 (CH), 112.6 (CH), 58.4 (CH\(_3\)), 18.6 (CH\(_3\)).

Synthesis of \(N\)-\{3-methyl-2-(pyrimidin-2-ylamino)phenyl\}methanesulfonamide (3am):

The representative procedure was followed using \(N\)-(o-toly)pyrimidin-2-amine (1a) (92.5 mg, 0.5 mmol) and methanesulfonyl azide (2m) (72.6 mg, 0.6 mmol). After 12 h, purification by column
chromatography on silica gel (PE/EtOAc/DCM = 10:1:1→5:1:1) to afford the desired product 3am (88 mg, 63%) as a white solid.

M. p. = 169–171 °C.

\(^1\)H-NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.35\) (d, \(J = 4.8\) Hz, 2H), 7.79 (br s, 1H), 7.53 (d, \(J = 8.0\) Hz, 1H), 7.26 (dd, \(J = 8.0, 8.0\) Hz, 1H), 7.16 (br s, 1H), 7.15 (d, \(J = 8.0\) Hz, 1H), 6.74 (t, \(J = 4.8\) Hz, 1H), 2.97 (s, 3H), 2.29 (s, 3H).

\(^{13}\)C-NMR (100 MHz, CDCl\(_3\)): \(\delta = 161.3\) (C\(_q\)), 158.7 (CH), 135.9 (C\(_q\)), 134.1 (C\(_q\)), 129.9 (C\(_q\)), 127.9 (CH), 127.7 (CH), 121.3 (CH), 113.0 (CH), 39.8 (CH\(_3\)), 18.6 (CH\(_3\)).

HRMS (ESI) m/z calcd for C\(_{12}\)H\(_{15}\)N\(_4\)O\(_2\)S [M + H]\(^+\): 279.0916, Found 279.0912.

Intermolecular competition experiment with anilines 1a and 1c (Scheme 4)
The mixture of \(N\)-(o-tolyl)pyrimidin-2-amine (1a) (185.0 mg, 1.0 mmol), \(N\)-{2-(trifluoromethyl)phenyl}pyrimidin-2-amine (1c) (239 mg, 1.0 mmol), \(para\)-toluenesulfonyl azide (2a) (98.5 mg, 0.5 mmol), \([IrCl_2Cp^*]_2\) (4.0 mg, 0.005 mmol), \(AgSbF_6\) (6.9 mg, 0.02 mmol) and 1,2-DCE (2.0 mL) was stirred at 80 °C under \(N_2\) for 12 h. The reaction mixture was cooled to ambient temperature, filtered through a pad of celite and silica gel, and washed with EtOAc (3 x 10 mL). The solvents were removed under reduced pressure. The residue was purified by silica gel column chromatography (PE/EtOAc/DCM = 10:1:1→5:1:1→3:1:1) to yield 3ca (17 mg, 10%) as a pale yellow solid and 3aa (175 mg, 85%) as a white solid.
Intemolecular competition experiment with sulfonyl azides 2a and 2f (Scheme 5)

![Scheme 5](image)

The mixture of N-(o-tolyl)pyrimidin-2-amine (1a) (92.5 mg, 0.5 mmol), para-toluenesulfonyl azide (2a) (197.0 mg, 1.0 mmol), 4-nitrobenzenesulfonyl azide (2f) (228.0 mg, 1.0 mmol), [IrCl₂Cp*]₂ (4.0 mg, 0.005 mmol), AgSbF₆ (6.9 mg, 0.02 mmol) and 1,2-DCE (2.0 mL) was stirred at 80 °C under N₂ for 12 h. The reaction mixture was cooled to ambient temperature, filtered through a pad of celite and silica gel, and washed with EtOAc (3 x 10 mL). The solvents were removed under reduced pressure. The residue was purified by silica gel column chromatography (PE/EtOAc/DCM = 10:1:1→5:1:1→3:1:1) to yield 3af (101 mg, 52%) as a pale yellow solid and 3aa (62 mg, 35%) as a white solid.
Iridium-catalyzed direct ortho-C–H amidation of sulfonyl azide 2a with aniline 1e in 1,2-DCE and [D]₄-AcOH (Scheme 6)

A mixture of N-phenylpyrimidin-2-amine (1e) (342.0 mg, 2.0 mmol), para-toluenesulfonyl azide (2a) (197.0 mg, 1.0 mmol), [IrCl₂Cp*]₂ (8.0 mg, 0.01 mmol), AgSbF₆ (13.8 mg, 0.04 mmol), 1,2-DCE (2.0 mL) and [D]₄-AcOH (112 μL, 2.0 mmol) was stirred at 80 °C under N₂ for 12 h. The reaction mixture was cooled to ambient temperature, filtered through a pad of celite and silica gel, and washed with EtOAc (3 x 10 mL). The solvents were removed under reduced pressure. The residue was purified by silica gel column chromatography (PE/EtOAc/DCM = 40:1:1→10:1:1→4:1:1) to give [D]ₙ-1e (88 mg, 26%) as a white solid and [D]ₙ-3ea (144 mg, 42%) as a white solid. The deuterium incorporation was estimated by ¹H-NMR spectroscopy.
Removal of the 2-pyridyl and sulfonyl moieties (Scheme 8)\(^5\)

Synthesis of 3-methylbenzene-1,2-diamine (4aa/4ad):

Procedure 1: 4-Methyl-N-{3-methyl-2-(pyrimidin-2-ylamino)phenyl}benzenesulfonamide (3aa, 0.2 mmol, 71mg) was dissolved in aqueous HCl (37%, 2.0 mL) in a microwave vial. The vial was heated up to 150 °C (40 W) for 3 h in the microwave oven. The reaction mixture was allowed to cool to ambient temperature and poured into EtOAc (50 mL), and then saturated aqueous NaHCO\(_3\) solution was added until the pH was adjusted to 7. The aqueous layer was extracted with EtOAc (3 × 50 mL), the combined organic layers were dried with Na\(_2\)SO\(_4\) and concentrated \textit{in vacuo}. The residue was purified by silica gel column chromatography (PE/EtOAc/DCM = 20:1:1→10:1:1→5:1:1) to give 4aa (13mg, 53%) as a yellow solid.

Procedure 2: 4-Methyl-N-{3-methyl-2-(pyrimidin-2-ylamino)phenyl}benzenesulfonamide (3ad, 0.2 mmol, 71mg) was dissolved in aqueous HCl (37%, 2.0 mL) in a microwave vial. The vial was heated up to 150 °C (40 W) for 3 h in the microwave oven. The reaction mixture was allowed to cool to ambient temperature and poured into EtOAc (50 mL), and then saturated aqueous NaHCO\(_3\) solution was added until the pH was adjusted to 7. The aqueous layer was extracted with EtOAc (3 × 50 mL), the combined organic layers were dried with Na\(_2\)SO\(_4\) and concentrated \textit{in vacuo}. The residue was purified by silica gel column chromatography (PE/EtOAc/DCM = 20:1:1→10:1:1→5:1:1) to give 4aa (12mg, 48%) as a yellow solid.

M. p. = 70–71 °C.

\(^1\)H-NMR (400 MHz, CDCl\(_3\)): \(\delta = 6.72–6.61 (m, 3H), 3.28 (br s, 2H), 3.28 (br s, 2H), 2.23 (s, 3H)\).

\(^{13}\)C-NMR (100 MHz, CDCl\(_3\)): \(\delta = 133.9 (C_3), 133.5 (C_3), 123.4 (C_3), 122.1 (CH), 119.2 (CH), 115.1 (CH), 17.4 (CH\(_3\)).\)

HRMS (ESI) m/z calcd for C\(_{34}\)H\(_{25}\)O [M + H]: 123.0917, Found 123.0917.

Synthesis of benzene-1,2-diamine (4ea):
4-Methyl-N-[2-(pyrimidin-2-ylamino)phenyl]benzenesulfonamide (3ea, 0.2 mmol, 68mg) was dissolved in aqueous HCl (37%, 2.0 mL) in a microwave vial. The vial was heated up to 150 °C (40 W) for 3 h in the microwave oven. The reaction mixture was allowed to cool to ambient temperature and poured into EtOAc (50 mL), and then saturated aqueous NaHCO₃ solution was added until the pH was adjusted to 7. The aqueous layer was extracted with EtOAc (3 × 50 mL), the combined organic layers were dried with Na₂SO₄ and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EtOAc/DCM = 30:1:1→10:1:1→6:1:1) to give 4ea (13mg, 58%) as a yellow solid. M. p. = 103–105 °C.

1H-NMR (400 MHz, CDCl₃): δ = 6.79–6.70 (m, 4H), 3.33 (br s, 4H).

13C-NMR (100 MHz, CDCl₃): δ = 134.8 (C₉), 120.3 (CH), 116.8 (CH).

Synthesis of 4-(trifluoromethyl)benzene-1,2-diamine (4ia):

4-Methyl-N-[2-(pyrimidin-2-ylamino)-5-(trifluoromethyl)phenyl]benzenesulfonamide (3ia, 0.2 mmol, 82mg) was dissolved in aqueous HCl (37%, 2.0 mL) in a microwave vial. The vial was heated up to 150 °C (40 W) for 3 h in the microwave oven. The reaction mixture was allowed to cool to ambient temperature and poured into EtOAc (50 mL), and then saturated aqueous NaHCO₃ solution was added until the pH was adjusted to 7. The aqueous layer was extracted with EtOAc (3 × 50 mL), the combined organic layers were dried with Na₂SO₄ and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EtOAc/DCM = 20:1:1→10:1:1→5:1:1) to give 4ia (19mg, 54%) as a white solid. M. p. = 57–58 °C.

1H-NMR (400 MHz, CDCl₃): δ = 7.01 (d, J = 7.8 Hz, 1H), 6.95 (s, 1H), 6.73 (d, J = 7.8 Hz, 1H), 3.56 (br s, 2H), 3.56 (br s, 2H).

13C-NMR (100 MHz, CDCl₃): δ = 138.2 (C₉), 134.1 (C₉), 124.7 (q, ¹JC₁-F = 269 Hz, C₉), 121.8 (q, ²JC₁-F = 269 Hz, C₉), 124.7 (q, ³JC₁-F = 269 Hz, C₉), 117.7 (q, ⁴JC₁-F = 4 Hz, CH), 115.5 (CH), 113.5 (q, ⁵JC₁-F = 4 Hz, CH).
19F-NMR (376 MHz, CDCl$_3$): $\delta = -61.3$ (s).

HRMS (ESI) m/z calcd for C$_{14}$H$_{25}$O [M + H]$^+$: 177.0634, Found 177.0634.
References

NMR spectra of compounds 3 and 4

3aa
(1H NMR, CDCl\textsubscript{3})
13C NMR, CDCl$_3$)

3aa

1H NMR, CDCl$_3$)

3ba
3ba
(13C NMR, CDCl$_3$)

3ca
(1H NMR, CDCl$_3$)
\[\text{3ca} \quad (^{13}\text{C NMR, CDCl}_3) \]

\[\text{3da} \quad (^{1}\text{H NMR, CDCl}_3) \]
3da
(13C NMR, CDCl$_3$)

3ea
(1H NMR, CDCl$_3$)
3ea
(13C NMR, CDCl$_3$)

3fa
(1H NMR, CDCl$_3$)
3fa
(13C NMR, CDCl$_3$)

3ga
(1H NMR, [d]$_6$-DMSO)
3ga
13C NMR, [d$_6$]-DMSO

3ha
1H NMR, [d$_6$]-DMSO
3ha
\((^{13}\text{C NMR, [d]}_6\text{-DMSO})\)

3ia
\((^{1}\text{H NMR, [d]}_6\text{-DMSO})\)
3ia
(13C NMR, [d]$_6$-DMSO)

3ja
(1H NMR, CDCl$_3$)
3ac
(13C NMR, CDCl$_3$)

3ad
(1H NMR, [d]$_6$DMSO)
3ad

$(^{13}\text{C NMR, } [d]_{60}\text{-DMSO})$

3ae

$(^{1}\text{H NMR, } [d]_{60}\text{-DMSO})$
3af
(13C NMR, [d$_6$]-DMSO)

3ag
(1H NMR, CDCl$_3$)
3ah
\(^{13}\text{C NMR, CDCl}_3\)

3ai
\(^{1}\text{H NMR, CDCl}_3\)
3ai
(13C NMR, CDCl$_3$)

3aj
(1H NMR, CDCl$_3$)
3aj
(13C NMR, CDCl$_3$)

3ak
(1H NMR, CDCl$_3$)
$3ak$
(13C NMR, CDCl$_3$)

$3al$
(1H NMR, CDCl$_3$)
f_1 (ppm)

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5

18.6
39.8
113.0
121.3
127.7
127.9
129.9
134.1
135.9
158.7
161.3

$3am$
(13C NMR, CDCl$_3$)

$4aa/4ad$
(1H NMR, CDCl$_3$)
4aa/4ad
(13C NMR, CDCl$_3$)

4ea
(1H NMR, CDCl$_3$)
4ea
\((^{13}\text{C} \text{ NMR, CDCl}_3)\)

4ia
\((^{1}\text{H} \text{ NMR, CDCl}_3)\)
4ia
(13C NMR, CDCl$_3$)