Supporting information for
Copper nitrate-catalyzed oxidative coupling of unactivated C(sp³)–H bonds of ethers and alkanes with N-hydroxyphthalimide: synthesis of N-hydroxyimide esters

Xiaohe Xu, a Jian Sun, a Yuyan Lin, a Jingya Cheng, a Pingping Li, a Yiyan Yan, a Qi Shuai a,b and Yuanyuan Xie a,b

a Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China
b College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China. E-mail: xyycz@zjut.edu.cn.

Table of Contents
1. General information 1
2. General experimental procedure 1-2
3. ¹H and ¹³C NMR data 3-7
4. References 7
5. Copies of ¹H and ¹³C spectrum 8-23
6. HRMS (ESI) spectra of 2,2,6,6-tetramethyl-1-(tetrahydrofuran-2-yloxy)piperidine 24
1. General information:

All reagents were obtained from commercial suppliers and used without further purification (Tert-butyl ethers were synthesized according to *Tetrahedron Lett.*, 2012, 53, 641). TLC analysis was performed using pre-coated glass plates. Silica gel for column chromatography was purchased from Qingdao Haiyang Chemical Co., Ltd. 1H NMR and 13C NMR were recorded with Bruker instrument at 600 and 150 MHz, respectively, and TMS was used as internal standard. The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, dd = doublet of doublets, t = triplet, q = quartet, m = multiplet, br = broad. Coupling constants, J were reported in Hertz unit (Hz). Mass spectra were measured with Thermo Finnigan LCQ-Advantage. High resolution mass spectral (HRMS) analyze were measured on a Bruker micro TOF-Q II instrument using ESI or EI techniques. The structures of known compounds were further corroborated by comparing their 1H NMR, 13C NMR and MS data with those of literature.

2. General experimental procedure:

General procedure for the Cu(NO$_3$)$_2$·3H$_2$O catalyzed coupling reaction of ethers and alkanes with NHPI.

The ethers or alkanes 1 (4.0 mL), NHPI (1.0 mmol) and Cu(NO$_3$)$_2$·3H$_2$O (0.05 mmol) were added to CH$_3$CN (4.0 mL) in a 25 mL flame-dried flask. The solution was stirred for given reaction time as shown in scheme 2 under O$_2$ (balloon) at 80 °C. After the reaction, the solvents were removed under reduced pressure and the residue was washed with saturated NaHCO$_3$ and then extracted with EtOAc (2 × 20 mL). The combined organic layers were dried over anhydrous Na$_2$SO$_4$ and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc) to afford the corresponding products.

General procedure for synthesis of N-hydroximide esters from tert-butyl ethers.

The tert-butyl ethers 4 (2.0 mL), NHPI (1.0 mmol) and Cu(NO$_3$)$_2$·3H$_2$O (0.05 mmol) were added to CH$_3$CN (4.0 mL) in a 25 mL flame-dried flask. The solution was stirred for 10 h under O$_2$ (balloon) at 80 °C. After the reaction, the solvents were removed under reduced pressure and the residue was washed with saturated NaHCO$_3$ and then extracted with EtOAc (2 × 20 mL). The combined...
organic layers were dried over anhydrous Na$_2$SO$_4$ and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc) to afford the corresponding products.
H and 13C NMR data

2-(tetrahydrofuran-2-yloxy)isoindoline-1,3-dione (3a):
White solid, m.p. 132-133 °C. \(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta\) 7.85-7.82 (m, 2H), 7.76-7.73 (m, 2H), 5.80 (d, \(J = 4.8\) Hz, 1H), 4.38-4.34 (m, 1H), 4.05-4.01 (m, 1H), 2.34-2.29 (m, 1H), 2.28-2.22 (m, 1H), 2.15-2.10 (m, 1H), 2.00-1.94 (m, 1H). \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 163.9, 134.3, 129.1, 123.4, 108.8, 69.2, 30.8, 22.6. IR (KBr): \(v\) 3443, 3010, 2999, 2978, 1731, 1380, 1138, 971, 879, 700, 520 cm\(^{-1}\).

2-(5-methyltetrahydrofuran-2-yloxy)isoindoline-1,3-dione (3b):
White solid, m.p. 124-126 °C. \(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta\) 7.85-7.83 (m, 2H), 7.76-7.74 (m, 2H), 5.81-5.79 (m, 1H), 4.74-4.71 (m, 1H), 2.34-2.31 (m, 1H), 2.28-2.25 (m, 2H), 1.54-1.49 (m, 1H), 1.27 (dd, \(J = 6.6, 3.0\) Hz, 3H). \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 163.9, 134.3, 129.1, 123.4, 108.9, 30.6, 30.2, 20.5.

2-(tetrahydro-2H-pyran-2-yloxy)isoindoline-1,3-dione (3c):
White solid, m.p. 123-124 °C. \(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta\) 7.84-7.82 (m, 2H), 7.75-7.72 (m, 2H), 5.42 (d, \(J = 1.8\) Hz, 1H), 4.54-4.50 (m, 1H), 3.68-3.65 (m, 1H), 2.13-2.10 (m, 1H), 1.99-1.92 (m, 1H), 1.87-1.81 (m, 1H), 1.74-1.68 (m, 3H). \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 163.8, 134.3, 129.2, 123.4, 103.1, 62.3, 27.7, 24.8, 17.6.

2-(1,4-dioxan-2-yloxy)isoindoline-1,3-dione (3d):
White solid, m.p. 185-187 °C. \(^1\)H NMR (600
MHz, CDCl$_3$) δ 7.88-7.86 (m, 2H), 7.78-7.77 (m, 2H), 5.27 (d, J = 1.8, 1H), 4.90-4.85 (m, 1H), 4.18 (d, J = 12.6 Hz, 1H), 3.91 (dd, J = 11.4, 2.4 Hz, 1H), 3.85-3.80 (m, 2H), 3.57 (dd, J = 11.4, 2.4 Hz, 1H). 13C NMR (125 MHz, CDCl$_3$) δ 163.6, 134.5, 129.0, 123.6, 99.5, 66.2, 66.0, 60.9.

2-(1-ethoxyethoxy)isoindoline-1,3-dione (3e): Oil. 1H NMR (600 MHz, CDCl$_3$) δ 7.85-7.83 (m, 2H), 7.77-7.75 (m, 2H), 5.32 (q, J = 5.4 Hz, 1H), 4.19-4.15 (m, 1H), 3.85-3.80 (m, 1H), 1.53 (d, J = 5.4 Hz, 3H), 1.24 (t, J = 7.2 Hz, 3H). 13C NMR (125 MHz, CDCl$_3$) δ 164.3, 134.4, 129.1, 123.4, 106.4, 63.6, 18.9, 15.0. IR (KBr): ν 3441, 3015, 2978, 1737, 1710, 1463, 1137, 976, 881, 698, 522 cm$^{-1}$.

2-((tert-butoxymethoxy)isoindoline-1,3-dione (3f): White solid, m.p. 93-95 °C. 1H NMR (600 MHz, CDCl$_3$) δ 7.85-7.82 (m, 2H), 7.76-7.74 (m, 2H), 5.28 (s, 2H), 1.39 (s, 9H). 13C NMR (125 MHz, CDCl$_3$) δ 163.8, 134.4, 129.1, 123.4, 95.0, 28.3. IR (KBr): ν 3441, 3015, 2978, 1737, 1710, 1463, 1137, 976, 881, 698, 522 cm$^{-1}$.

2-(cyclopentylxomethoxy)isoindoline-1,3-dione (3g): White solid, m.p. 71-73 °C. 1H NMR (600 MHz, CDCl$_3$) δ 7.85-7.82 (m, 2H), 7.76-7.73 (m, 2H), 5.17 (s, 2H), 4.79-4.76 (m, 1H), 1.86-1.81 (m, 2H), 1.72-1.68 (m, 4H), 1.60-1.57 (m, 2H). 13C NMR (125 MHz, CDCl$_3$) δ 163.7, 134.4, 129.1, 123.4, 97.8, 80.3, 32.1, 23.4. IR (KBr): ν 3426, 3013, 2946, 2869, 1727, 1466, 1136, 968, 870, 701, 520 cm$^{-1}$.
2-(2-bromo-1-(2-bromoethoxy)ethoxy)isoindoline-1,3-dione (3h): White solid, m.p. 112-114 °C.

1H NMR (600 MHz, CDCl$_3$) δ 7.89-7.88 (m, 2H), 7.82-7.81 (m, 2H), 5.30 (dd, $J = 8.4$, 3.0 Hz, 1H), 4.58-4.54 (m, 1H), 4.23-4.19 (m, 2H), 3.78 (dd, $J = 10.8$, 3.0 Hz, 1H), 3.60-3.58 (m, 2H), 3.56-3.52 (m, 1H).

13C NMR (125 MHz, CDCl$_3$) δ 164.1, 134.9, 128.9, 123.8, 107.9, 69.9, 29.5.

2-(methoxymethoxy)isoindoline-1,3-dione (3i): White solid, m.p. 122-124 °C. 1H NMR (600 MHz, CDCl$_3$) δ 7.87-7.86 (m, 2H), 7.78-7.77 (m, 2H), 5.14 (s, 2H), 3.74 (s, 3H).

13C NMR (125 MHz, CDCl$_3$) δ 163.6, 134.5, 129.0, 123.5, 101.3, 57.8. IR (KBr): ν 3454, 3027, 2961, 2831, 1718, 1637, 1132, 1098, 967, 878, 701, 519 cm$^{-1}$.

2-(1-(butylthio)butoxy)isoindoline-1,3-dione (3j): Oil. 1H NMR (600 MHz, DMSO-d_6) δ 7.90-7.87 (m, 4H), 5.37-5.35 (m, 1H), 2.89-2.85 (m, 1H), 2.75-2.70 (m, 1H), 2.00-1.96 (m, 1H), 1.81-1.76 (m, 1H), 1.52-1.47 (m, 4H), 1.37-1.32 (m, 2H), 0.93 (t, $J = 7.2$ Hz, 3H), 0.87-0.86 (m, 3H). 13C NMR (125 MHz, DMSO-d_6) δ 164.1, 135.4, 129.0, 123.8, 93.9, 35.7, 31.7, 29.0, 21.9, 19.2, 14.0, 13.9. IR (KBr): ν 3456, 3047, 2961, 2866, 1735, 1685, 1136, 1082, 881, 698, 522 cm$^{-1}$.

2-(cyclohexyloxy)isoindoline-1,3-dione (3k): White solid, m.p. 116-118 °C. 1H NMR (600 MHz, CDCl$_3$) δ 7.78-7.75 (m, 2H), 7.69-7.66 (m, 2H), 4.18-4.14 (m, 1H), 1.97-1.95 (m, 2H), 1.79-1.78 (m,
2-(cyclooctyloxy)isoindoline-1,3-dione (3l): White solid, m.p. 107-109 °C. 1H NMR (600 MHz, CDCl$_3$) δ 7.85-7.82 (m, 2H), 7.76-7.73 (m, 2H), 4.43-4.39 (m, 1H), 2.02-1.98 (m, 2H), 1.95-1.89 (m, 2H), 1.85-1.79 (m, 2H), 1.61-1.47 (m, 8H). 13C NMR (125 MHz, CDCl$_3$) δ 164.5, 134.4, 129.1, 123.4, 88.8, 30.0, 27.1, 25.3, 22.9. IR (KBr): ν 3451, 3031, 2967, 2859, 1741, 1637, 1196, 1045, 979, 890, 696, 519 cm$^{-1}$. HRMS (ESI) calcd for [M+Na]$^+$ C$_{15}$H$_{17}$NNaO$_4$, m/z 298.1050, found 298.1041.

1,3-dioxoisindolin-2-yl-acetate (5a): Yellow oil. 1H NMR (600 MHz, CDCl$_3$) δ 7.89-7.87 (m, 2H), 7.80-7.78 (m, 2H), 2.4 (s, 3H). 13C NMR (125 MHz, CDCl$_3$) δ 169.7, 162.0, 134.7, 128.9, 124.0, 17.6. IR (KBr): ν 3448, 3037, 2930, 2843, 1787, 1743, 1639, 1141, 1004, 969, 879, 697, 521 cm$^{-1}$. HRMS (ESI) calcd for [M+Na]$^+$ C$_{15}$H$_{17}$NNaO$_4$, m/z 298.1050, found 298.1041.

1,3-dioxoisindolin-2-yl-heptanoate (5b): Yellow oil. 1H NMR (600 MHz, CDCl$_3$) δ 7.90-7.88 (m, 2H), 7.80-7.79 (m, 2H), 2.4 (s, 3H). 13C NMR (125 MHz, CDCl$_3$) δ 169.7, 162.0, 134.7, 128.9, 123.9, 31.3, 31.0, 28.5, 24.6, 22.4, 14.0. IR (KBr): ν 3448, 3037, 2954, 2869, 1788, 1740, 1638, 1139, 1081, 877, 699, 521 cm$^{-1}$. HRMS (ESI) calcd for [M+Na]$^+$ C$_{15}$H$_{17}$NNaO$_4$, m/z 298.1050, found 298.1041.

1,3-dioxoisindolin-2-yl-octanoate (5c): Yellow oil. 1H NMR (600 MHz, CDCl$_3$) δ 7.90-7.86 (m, 2H),
7.80-7.77 (m, 2H), 2.67-2.65 m, 2H), 1.801-1.76 (m, 2H), 1.43 (s, 2H), 1.33-1.30 (m, 6H), 0.90 (t, J =3.6 Hz, 3H). 13C NMR (125 MHz, CDCl3) δ 169.7, 162.0, 134.7, 129.0, 123.9, 31.6, 31.0, 28.8, 24.7, 22.6, 14.1. IR (KBr): ν 3448, 3035, 3026, 2964, 2879, 1789, 1743, 1642, 1149, 1077, 879, 698, 520 cm⁻¹. HRMS (ESI) calcd for [M+Na]+ C16H19NNaO4, m/z 312.1206, found 312.1202.

![5d](image)

1,3-dioxoisindolin-2-yl-benzoate (5d): White solid, m.p. 168-170 °C. 1H NMR (600 MHz, CDCl3) δ 8.22 (d, J = 7.8 Hz, 2H), 7.96-7.93 (m, 2H), 7.85-7.83 (m, 2H), 7.72 (t, J = 7.8 Hz, 1H), 7.56 (t, J = 7.8 Hz, 2H). 13C NMR (125 MHz, CDCl3) δ 162.8, 162.1, 134.9, 134.8, 130.7, 129.0, 128.9, 125.3, 124.0. IR (KBr): ν 3438, 3043, 3024, 2984, 2879, 1772, 1734, 1643, 1140, 1037,1022, 1008, 875, 697, 520 cm⁻¹.

References

Copies of 1H and 13C spectrum

3a (1H, CDCl$_3$)

3a (13C, CDCl$_3$)
3b (1H, CDCl$_3$)

3b (13C, CDCl$_3$)

9
$3c$ (1H, CDCl$_3$)

$3c$ (^{13}C, CDCl$_3$)
3d (\(^1\)H, CDCl\(_3\))

3d (\(^{13}\)C, CDCl\(_3\))
$3e \ (^{1}H, CDCl_{3})$

$3e \ (^{13}C, CDCl_{3})$
$3g$ (1H, CDCl$_3$)

$3g$ (^{13}C, CDCl$_3$)
3i (1H, CDCl$_3$)

3i (13C, CDCl$_3$)
$3j^{(1}H, \text{DMSO-}d_6^{)}$

$3j^{(13}C, \text{DMSO-}d_6^{)}$
$3k \ (^{1}H, \text{CDCl}_{3})$

$3k \ (^{13}C, \text{CDCl}_{3})$
$3I \left(^1H, \text{CDCl}_3 \right)$

$3I \left(^{13}C, \text{CDCl}_3 \right)$
5a (1H, CDCl$_3$)

5a (13C, CDCl$_3$)
5b (1H, CDCl$_3$)

5b (13C, CDCl$_3$)
$5c \left(^1H, CDCl_3 \right)$

$5c \left(^{13}C, CDCl_3 \right)$
5d (\(^1\)H, CDCl\(_3\))

5d (\(^{13}\)C, CDCl\(_3\))
HRMS (ESI) spectra of 2,2,6,6-tetramethyl-1-(tetrahydrofuran-2-yloxy)piperidine (6)

2,2,6,6-tetramethyl-1-(tetrahydrofuran-2-yloxy)piperidine
Chemical Formula: C\textsubscript{13}H\textsubscript{25}NO\textsubscript{2}
Exact Mass: 227.1885

<table>
<thead>
<tr>
<th>Formula (M)</th>
<th>Ion Formula</th>
<th>m/z</th>
<th>Calc m/z</th>
<th>Diff (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C\textsubscript{13} H\textsubscript{25} N O\textsubscript{2}</td>
<td>C\textsubscript{13} H\textsubscript{26} N O\textsubscript{2}</td>
<td>228.1958</td>
<td>228.1958</td>
<td>0.02</td>
</tr>
</tbody>
</table>