Supporting Information

XtalFluor-E® mediated proteo functionalization of olefin, access to N-acetyl N,O-acetals

Yi Yi, Hadi Gholami, Matthew G. Morrow, Babak Borhan

Department of Chemistry, Michigan State University, East Lansing, Michigan, 48824, USA

Table of Contents
I. General Information..S2
II. General Procedure A for Screening and Optimization..S2
III. Analytical data for products..S2
IV. General procedure for synthesis of unsaturated amides 1a-1l and analytical data..S10
V. HBF₄ Catalyzed Proton-functionalization..S17
VI. ¹⁹F NMR Study of XtalFluor-E® with addition of MeOH..S19
VII. Reference..S19
VIII. NMR Spectra...S20
I. General Information

All reagents were purchased from commercial sources and were used without purification. XtalFluor-E® and N-vinylcaprolactam were purchased from Aldrich. N-vinyl-2-pyrrolidone was purchased from Combi-Blocks. TLC analyses were performed on silica gel plates (pre-coated on glass; 0.20 mm thickness with fluorescent indicator UV254) and were visualized by UV or charred in PMA stains. ¹H and ¹³C NMR spectra were collected on 500 MHz NMR spectrometers (Agilent) using CDCl₃. Chemical shifts are reported in parts per million (ppm) and are referenced to residual solvent peaks. Flash silica gel (32-63 µm, Silicycle 60 Å) was used for column chromatography. All known compounds were characterized by ¹H and ¹³C NMR and are in complete agreement with samples reported elsewhere. All new compounds were characterized by ¹H and ¹³CNMR, HRMS, and melting point (where appropriate).

II. General Procedure A for Screening and Optimization

A 5 mL vial equipped with a magnetic stir bar was charged with the substrate (0.1 mmol, 1 equiv.) and XtalFluor-E® (20 mol%). The mixture was dissolved with freshly distilled dichloromethane (0.5 mL) and alcohol (0.5 mL). The vial was flushed with argon and sealed. The reaction was stirred at ambient temperature for 1-24 h. The reaction was then quenched with saturated Na₂SO₃ and extracted with dichloromethane. The combined organics were dried over anhydrous Na₂SO₄ and filtered. Conversions were calculated by ¹H NMR. Pure product was isolated by column chromatography on silica gel or alumina (activated, neutral) as stationary phase (EtOAc in Hexanes as gradient).

III. Analytical data for products:

General procedure A was used with 19.1 mg (0.1 mmol) of 1b yielding 21.8 mg (98 % for (Z)-1b) and 19 mg (85 % for (E)-1b) of 2b respectively as a white solid.

white solids; M.P.: 66 - 70 ºC
Rᵣ: 0.23 (30% EtOAc in Hexane, UV)

¹H NMR (500 MHz, CDCl₃) δ 7.74 (d, J = 8.5 Hz, 2H), 6.91 (d, J = 9 Hz, 2H), 6.17 (d, J = 9.5 Hz, 1H), 5.24 (tt, J = 5 Hz, 13 Hz, 1H), 3.83 (s, 3H), 3.37 (s, 3H), 1.76 (m, 1H), 1.63 (m, 1H), 0.96 (t, J = 7.5 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 167.2, 162.5, 128.8, 126.2, 113.8, 82.7, 56.0, 55.4, 28.8, 9.2

HRMS analysis (ESI): calculated for (M+Na): C₁₂H₁₇NO₃Na 246.1106; found: 246.1113
General procedure A was used with 19.1 mg (0.1 mmol) of (Z)-1b yielding 22.5 mg (95 %) of 2c as a clear oil.

R_f: 0.33 (30% EtOAc in Hexane, UV)

{1}H NMR (500 MHz, CDCl_{3}) {\delta} 7.76 (d, J = 8.5 Hz, 2H), 6.94 (d, J = 9 Hz, 2H), 6.2 (d, J = 9 Hz, 1H), 5.36 (m, 1H), 3.86 (s, 3H), 3.70 (m, 1H), 3.57 (m, 1H), 1.78 (m, 1H), 1.66 (m, 1H), 1.20 (t, J = 7 Hz, 3H), 0.99 (t, J = 7.5 Hz, 3H).

{13}C NMR (125 MHz, CDCl_{3}) {\delta} 166.8, 162.4, 128.8, 126.2, 113.8, 81.2, 63.8, 55.4, 29.1, 15.2, 9.3

HRMS analysis (ESI): calculated for (M+Na): C_{13}H_{19}NO_{3}Na 260.1263; found: 260.1270

General procedure A was used with 19.1 mg (0.1 mmol) of (Z)-1b yielding 20 mg (80 %) of 2d as a clear oil.

R_f: 0.29 (30% EtOAc in Hexane, UV)

{1}H NMR (500 MHz, CDCl_{3}) {\delta} 7.74 (d, J = 9 Hz, 2H), 6.92 (d, J = 9 Hz, 2H), 6.17 (d, J = 9 Hz, 1H), 5.34 (m, 1H), 3.85 (s, 3H), 3.59 (m, 1H), 3.47 (m, 1H), 1.79 (m, 1H), 1.69-1.56 (m, 3H), 0.99 (t, J = 7.5 Hz, 3H), 0.91 (t, J = 7.5 Hz, 3H).

{13}C NMR (125 MHz, CDCl_{3}) {\delta} 166.7, 162.4, 128.8, 126.3, 113.8, 81.4, 70.2, 55.4, 29.1, 22.9, 10.6, 9.4

HRMS analysis (ESI): calculated for (M+Na): C_{14}H_{21}NO_{3}Na 274.1419; found: 274.1425

General procedure A was used with 19.1 mg (0.1 mmol) of (E)-1b yielding 20 mg (40 %) of 2e as a clear oil.
R_f: 0.41 (30% EtOAc in Hexane, UV)

¹H NMR (500 MHz, CDCl₃) δ 7.73 (d, J = 8.8 Hz, 2H), 6.92 (d, J = 8.8 Hz, 2H), 6.19 (d, J = 9.4 Hz, 1H), 5.43 – 5.35 (m, 1H), 3.87 (dt, J = 12.3, 6.1 Hz, 1H), 3.83 (s, 3H), 1.75 – 1.66 (m, 1H), 1.67 – 1.58 (m, 1H), 1.19 (d, J = 6.0 Hz, 3H), 1.13 (d, J = 6.2 Hz, 3H), 0.96 (t, J = 7.4 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 166.57, 162.38, 128.77, 126.36, 113.82, 79.32, 69.22, 55.45, 29.48, 23.52, 21.70, 9.45.

HRMS analysis (ESI): calculated for (M+Na): C₁₄H₂₁NO₃Na 274.1419; found: 274.1420

General procedure A was used with 19.1 mg (0.1 mmol) of (E)-1b yielding 29 mg (98 %) of 2f as a wax.

R_f: 0.43 (30% EtOAc in Hexane, UV)

¹H NMR (500 MHz, CDCl₃) δ 7.73 (d, J = 8.8 Hz, 2H), 6.91 (d, J = 8.8 Hz, 2H), 6.12 (d, J = 9.8 Hz, 1H), 5.30 (ddd, J = 9.8, 7.3, 6.3 Hz, 1H), 3.83 (s, 3H), 2.64 (ddd, J = 12.7, 8.0, 6.0 Hz, 1H), 2.46 (ddd, J = 12.8, 8.2, 6.9 Hz, 1H), 1.86 – 1.69 (m, 2H), 1.69 – 1.52 (m, 2H), 1.02 (t, J = 7.4 Hz, 3H), 0.93 (t, J = 7.3 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 166.20, 162.35, 128.71, 126.19, 113.82, 56.00, 55.44, 32.80, 29.59, 23.11, 13.53, 10.86.

HRMS analysis (ESI): calculated for (M+Na): C₁₄H₂₁NO₂SNa 290.1191; found: 290.1197

General procedure A was used with 19.1 mg (0.1 mmol) of (E)-1b yielding 20 mg (85 %) of 2g as a white solid.

white solids; M.P.: 75 - 80 °C

R_f: 0.52 (30% EtOAc in Hexane, UV)
\(^1 \)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 7.73 (d, \(J = 8.8 \) Hz, 2H), 6.91 (d, \(J = 8.8 \) Hz, 2H), 6.09 (d, \(J = 9.8 \) Hz, 1H), 5.31 (ddd, \(J = 9.8, 7.3, 6.3 \) Hz, 1H), 3.83 (s, 3H), 2.65 (ddd, \(J = 12.7, 8.3, 6.0 \) Hz, 1H), 2.49 (ddd, \(J = 12.7, 8.4, 6.7 \) Hz, 1H), 1.87 – 1.69 (m, 2H), 1.64 – 1.48 (m, 2H), 1.34 (ddq, \(J = 13.9, 8.8, 7.2 \) Hz, 2H), 1.02 (t, \(J = 7.4 \) Hz, 3H), 0.85 (t, \(J = 7.3 \) Hz, 3H).

\(^{13} \)C NMR (125 MHz, CDCl\(_3\)) \(\delta \) 166.19, 162.35, 128.69, 128.69, 126.22, 113.82, 56.04, 55.44, 31.83, 30.49, 29.59, 21.99, 13.63, 10.86.

HRMS analysis (ESI): calculated for (M+Na): C\(_{15}\)H\(_{23}\)NO\(_2\)SNa 304.1347; found: 304.1362

General procedure A was used with 18 mg (0.102 mmol) of \(1c \) yielding 21 mg (98%) of \(2h \) as a clear oil.

\(R_f \) : 0.13 (30% EtOAc in Hexane, UV)

\(^1 \)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 7.76 (d, \(J = 8.8 \) Hz, 1H), 6.93 (d, \(J = 8.8 \) Hz, 2H), 6.25 (d, \(J = 9.5 \) Hz, 1H), 5.49 (dd, \(J = 9.5, 5.8 \) Hz, 1H), 3.85 (s, 4H), 3.39 (s, 3H), 1.43 (d, \(J = 5.9 \) Hz, 4H).

\(^{13} \)C NMR (125 MHz, CDCl\(_3\)) \(\delta \) 166.67, 162.45, 128.83, 126.09, 113.81, 78.17, 55.78, 55.43, 21.82.

HRMS analysis (ESI): calculated for (M+Na): C\(_{11}\)H\(_{15}\)NO\(_3\)Na 232.0950; found: 232.0954

General procedure A was used with 17.5 mg (0.1 mmol) of \((E)-1d\) yielding 18.9 mg (91% for \((Z)-1i\)) and 14.9 mg (72% for \((E)-1i\)) of \(2i\) respectively as a yellowish solid.

Yellowish solid, M.P.: 56 - 63 °C

\(R_f \) : 0.35 (30% EtOAc in Hexane, UV)

\(^1 \)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 7.71 – 7.67 (m, 2H), 7.28 – 7.18 (m, 2H), 6.22 (d, \(J = 9.7 \) Hz, 1H), 5.26 (dd, \(J = 9.8, 6.1, 1.8 \) Hz, 1H), 3.38 (d, \(J = 1.4 \) Hz, 3H), 2.38 (s, 2H), 1.77 (ddd, \(J = 13.7, 7.6, 6.1, 1.5 \) Hz, 1H), 1.67 – 1.57 (m, 1H), 0.97 (td, \(J = 7.5, 1.4 \) Hz, 3H).
13C NMR (125 MHz, CDCl$_3$) δ 167.44, 142.35, 131.10, 129.30, 126.96, 82.73, 56.01, 28.83, 21.47, 9.22.

HRMS analysis (ESI): calculated for (M+Na): C$_{12}$H$_{17}$NO$_2$Na 230.1157; found: 230.1154

General procedure A was used with 16.1 mg (0.1 mmol) of (Z)-1a yielding 18.4 mg (95%) of 2a as a clear oil.

R$_f$: 0.71 (30% EtOAc in Hexane, UV)

1H NMR (500 MHz, CDCl$_3$) δ 7.81 – 7.71 (m, 2H), 7.55 – 7.47 (m, 1H), 7.43 (dd, J = 8.2, 6.9 Hz, 2H), 6.26 (d, J = 9.6 Hz, 1H), 5.26 (dt, J = 9.6, 6.2 Hz, 1H), 3.39 (s, 3H), 1.78 (ddd, J = 14.0, 7.7, 6.5 Hz, 1H), 1.65 (ddd, J = 14.0, 7.7, 6.5 Hz, 1H), 0.98 (t, J = 7.5 Hz, 3H).

13C NMR (125 MHz, CDCl$_3$) δ 167.56, 134.01, 131.85, 128.67, 126.97, 82.83, 56.06, 28.82, 9.21.

HRMS analysis (ESI): calculated for (M+Na): C$_{11}$H$_{15}$NO$_2$Na 216.1000; found: 216.1004

General procedure A was used with 17.9 mg (0.1 mmol) of (Z)-1e yielding 14.2 mg (67%) of 2j as a clear oil.

R$_f$: 0.53 (30% EtOAc in Hexane, UV)

1H NMR (500 MHz, CDCl$_3$) δ 8.06 (td, J = 7.9, 1.9 Hz, 1H), 7.47 (dddd, J = 8.3, 7.2, 5.2, 1.9 Hz, 1H), 7.27 – 7.21 (m, 1H), 7.11 (dddd, J = 12.1, 8.2, 1.1 Hz, 1H), 6.77 (d, J = 12.4 Hz, 1H), 5.29 (dddd, J = 9.0, 6.1, 6.1, 2.7 Hz, 1H), 3.39 (s, 3H), 1.76 (dddd, J = 14.9, 13.5, 7.5, 7.5, 6.0 Hz, 1H), 1.73 – 1.62 (m, 1H), 0.97 (t, J = 7.5 Hz, 3H).

13C NMR (125 MHz, CDCl$_3$) δ 163.56 (d, J = 2.9 Hz), 161.59, 159.62, 133.60 (d, J = 9.3 Hz), 132.17 (d, J = 2.2 Hz), 124.88 (d, J = 3.2 Hz), 116.11 (d, J = 24.8 Hz), 82.77, 56.05, 28.68, 9.01.

HRMS analysis (ESI): calculated for (M+Na): C$_{11}$H$_{14}$NO$_2$FNa 234.0906; found: 234.0904
General procedure A was used with 20 mg (0.202 mmol) of \(\text{1g} \) yielding 18.8 mg (71\%) of \(\text{2l} \) as a clear oil.

R\(_f\): 0.08 (30% EtOAc in Hexane, dye with PMA)

\[^{1}\text{H NMR (500 MHz, CDCl}_3\text{) } \delta 5.70 (s, 1H), 5.32 – 5.12 (m, 1H), 3.29 (d, \(J = 1.3 \text{ Hz, } 2H \)), 2.21 (q, \(J = 7.6, 2H \)), 1.29 (dd, \(J = 5.9, 1.3 \text{ Hz, } 3H \)), 1.14 (td, \(J = 7.6, 1.2 \text{ Hz, } 3H \)).\]

\[^{13}\text{C NMR (125 MHz, CDCl}_3\text{) } \delta 173.79, 77.47, 55.60, 29.77, 21.57, 9.68.\]

HRMS analysis (ESI): calculated for (M+Na): \(\text{C}_6\text{H}_{13}\text{NO}_2\text{Na} \) 154.0844; found: 154.0843

General procedure A was used with 25 mg (0.2 mmol) of \(\text{1k} \) yielding 31 mg (98\%) of \(\text{2p} \) as a clear oil.

R\(_f\): 0.09 (30% EtOAc in Hexane, dye with PMA)

\[^{1}\text{H NMR (500 MHz, CDCl}_3\text{) } \delta 5.05 (t, \(J = 6.9 \text{ Hz, } 1H \)), 3.34 (dt, \(J = 9.9, 6.9 \text{ Hz, } 1H \)), 3.27 (dt, \(J = 9.9, 7.2 \text{ Hz, } 1H \)), 3.24 (s, \(3H \)), 2.51 – 2.37 (m, \(2H \)), 2.09 – 1.94 (m, \(2H \)), 1.82 – 1.65 (m, \(2H \)), 1.60 – 1.42 (m, \(2H \)), 0.88 (t, \(J = 7.5, 3H \)).\]

\[^{13}\text{C NMR (125 MHz, CDCl}_3\text{) } \delta 176.27, 83.80, 55.62, 40.83, 31.68, 25.55, 18.26, 9.25.\]

HRMS analysis (ESI): calculated for (M+Na): \(\text{C}_8\text{H}_{15}\text{NO}_2\text{Na} \) 180.1000; found: 180.1000

General procedure A was used with 22.2 mg (0.2 mmol) of \(\text{1l} \) yielding 26.8 mg (100\%) of \(\text{2q} \) as a clear oil.

R\(_f\): 0.14 (30% EtOAc in Hexane, dye with PMA)
1H NMR (500 MHz, CDCl$_3$) δ 5.28 (q, J = 6.1 Hz, 1H), 3.37 – 3.24 (m, 2H), 3.18 (d, J = 1.1 Hz, 3H), 2.47 – 2.34 (m, 2H), 2.08 – 1.89 (m, 2H), 1.27 (dd, J = 6.1, 1.1 Hz, 3H).

13C NMR (125 MHz, CDCl$_3$) δ 175.74, 78.77, 55.41, 40.73, 31.68, 18.67, 18.09.

HRMS analysis (ESI): calculated for (M+Na): $C_7H_{13}NO_2Na$ 166.0844; found: 166.0844

General procedure A was used with 22.2 mg (0.2 mmol) of 1l yielding 31 mg (100 %) of 2r as a clear oil.

R$_f$: 0.14 (30% EtOAc in Hexane, dye with PMA)

1H NMR (500 MHz, CDCl$_3$) δ 5.40 (q, J = 6.1 Hz, 1H), 3.42 – 3.27 (m, 4H), 2.41 (td, J = 8.2, 1.7 Hz, 2H), 2.00 (p, J = 7.7 Hz, 2H), 1.27 (s, 2H), 1.15 (t, J = 7.1 Hz, 3H).

13C NMR (125 MHz, CDCl$_3$) δ 175.55, 77.18, 63.14, 40.83, 31.71, 18.88, 18.07, 14.98.

HRMS analysis (ESI): calculated for (M+Na): $C_8H_{15}NO_2Na$ 180.1000; found: 180.0996

General procedure A was used with 31 mg (0.22 mmol) of 1j yielding 37 mg (98 %) of 2o as a clear oil.

R$_f$: 0.15 (30% EtOAc in Hexane, dye with PMA)

1H NMR (500 MHz, CDCl$_3$) δ 5.71 (q, J = 6.1 Hz, 1H), 3.30 (ddd, J = 15.4, 7.7, 1.7 Hz, 1H), 3.23 – 3.07 (m, 4H), 2.56 (ddd, J = 13.8, 10.3, 1.8 Hz, 1H), 2.47 (ddd, J = 13.8, 9.3, 1.6 Hz, 1H), 1.78 – 1.43 (m, 6H), 1.20 (d, J = 6.1 Hz, 3H).

13C NMR (125 MHz, CDCl$_3$) δ 176.66, 80.78, 55.47, 40.83, 37.73, 30.09, 29.32, 23.59, 19.13.

HRMS analysis (ESI): calculated for (M+Na): $C_9H_{17}NO_2Na$ 194.1157; found: 194.1160
General procedure A was used with 22.6 mg (0.2 mmol) of 1h yielding 24 mg (83 %) of 2m as a colorless oil.

R_f: 0.30 (30% EtOAc in Hexane, dye with PMA)

^1^H NMR (500 MHz, CDCl₃) δ 5.86 – 5.68 (m, 1H), 5.26 (dq, J = 9.6, 5.4 Hz, 1H), 3.29 (d, J = 1.1 Hz, 3H), 2.43 – 2.24 (m, 1H), 1.30 (dd, J = 5.9, 1.0 Hz, 3H), 1.15 (ddd, J = 12.8, 7.0, 1.0 Hz, 6H).

^1^C NMR (125 MHz, CDCl₃) δ 177.12, 77.40, 55.49, 35.78, 21.55, 19.73, 19.35.

HRMS analysis (ESI): calculated for (M+Na): C₇H₁₅NO₂Na 168.1000 found: 168.1002

General procedure A was used with 25.4 mg (0.2 mmol) of 1i yielding 27.4 mg (86 %) of 2n as a clear oil.

R_f: 0.26 (30% EtOAc in Hexane, dye with PMA)

^1^H NMR (500 MHz, CDCl₃) δ 5.76 (d, J = 9.6 Hz, 1H), 5.27 (dq, J = 9.5, 5.9 Hz, 1H), 3.30 (d, J = 0.9 Hz, 3H), 2.19 (t, J = 7.6 Hz, 2H), 1.67 – 1.46 (m, 2H), 1.32 (ddd, J = 19.5, 6.7 Hz, 5H), 0.90 (t, J = 7.3 Hz, 3H).

^1^C NMR (125 MHz, CDCl₃) δ 173.18, 77.44, 55.59, 36.59, 27.64, 22.37, 21.60, 13.77.

HRMS analysis (ESI): calculated for (M+Na): C₈H₁₇NO₂Na 182.1157; found: 182.1156

General procedure A was used with 23.3 mg (0.1 mmol) of (Z)-1f yielding 26.5 mg (100 %) of 2k as a clear oil.

R_f: 0.39 (30% EtOAc in Hexane, UV)
IV. General procedure for synthesis of unsaturated amides 1a-l and analytical data

![General procedure diagram](image)

General procedure B: The appropriate aryl chloride (1 equiv) was dissolved in freshly distilled dichloromethane (15 mL) at room temperature. K₂CO₃ (1 equiv) was added in one portion to the solution at 0 °C. After stirring for 5 min, allylamine (3 equiv) was added in one portion. The reaction mixture was stirred for 2 h and gradually warmed to room temperature. The reaction was quenched with addition of H₂O, the organic layer was separated and washed with dichloromethane. The combined organic fraction was dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by silica gel chromatography (25% EtOAc in Hexane). The purified allyl amide product was used in the next step. Freshly distilled i-Pr₂NH (2.2 equiv) was dissolved in anhydrous THF (0.3 M) and the solution was cooled down to –78 °C. n-BuLi (2.5 M in hexane, 2.2 equiv) was added dropwise to the solution. After stirring for 15 min, allyl amide (1 equiv) in anhydrous THF was added dropwise to the LDA solution at –78 °C. The reaction mixture was warmed to room temperature gradually. After 1 h, saturated NH₄Cl solution was added to work up the reaction. The organics were separated and dried over Na₂SO₄. The organic fraction was concentrated under vacuo and the residue was purified by silica gel column chromatography (15% EtOAc in Hex).

![Diagram](image)

General procedure B was used with 2 g (12.5 mmol) of benzoyl chloride yielding 1.1 g (55%) of (Z)-1a and 600 mg (30%) of (E)-1a as a white solid.

For (Z)-1a:

White solid, M.P.: 68 - 73 °C
R_f : 0.72 (30% EtOAc in Hexane, UV)

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.81 – 7.74 (m, 2H), 7.59 (d, \(J = 9.6\) Hz, 1H), 7.55 – 7.48 (m, 1H), 7.47 – 7.39 (m, 2H), 6.92 (ddq, \(J = 10.8, 8.9, 1.8\) Hz, 1H), 4.97 – 4.87 (m, 1H), 1.69 (dd, \(J = 7.1, 1.8\) Hz, 3H).

\(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\) 164.30, 133.98, 131.92, 128.75, 126.99, 122.24, 106.08, 10.99.

HRMS analysis (ESI): calculated for (M+H): C\(_{10}\)H\(_{12}\)NO 162.0919; found: 162.0920

For \((E)\)-\(1a\):

White solid, M.P.: 92 - 97 °C

\(R_f : 0.51\) (30% EtOAc in Hexane, UV)

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.86 – 7.72 (m, 2H), 7.63 (s, 1H), 7.54 – 7.39 (m, 3H), 6.94 (ddq, \(J = 14.0, 10.4, 1.7\) Hz, 1H), 5.29 (dq, \(J = 13.6, 6.7\) Hz, 1H), 1.72 (dd, \(J = 6.7, 1.7\) Hz, 3H).

\(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\) 164.16, 133.84, 131.78, 128.67, 126.95, 123.55, 108.79, 14.97.

HRMS analysis (ESI): calculated for (M+H): C\(_{10}\)H\(_{12}\)NO 162.0919; found: 162.0920

General procedure B was used with 2 g (11.72 mmol) of \(p\)-methoxybenzoyl chloride yielding 560 mg (26%) of \((Z)\)-\(1b\) and 630 mg (28%) of \((E)\)-\(1b\) after 2 steps as a white solid.

For \((Z)\)-\(1b\):

white solids; M.P.: 70 - 75 °C

\(R_f : 0.38\) (30% EtOAc in Hexane, UV)

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.78 – 7.72 (m, 2H), 7.54 (d, \(J = 10.4\) Hz, 1H), 6.96 – 6.88 (m, 3H), 4.94 – 4.80 (m, 1H), 3.83 (s, 3H), 1.68 (dd, \(J = 7.1, 1.7\) Hz, 3H).

\(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\) 163.79, 162.49, 128.88, 126.13, 122.38, 113.91, 105.46, 55.44, 10.97.

HRMS analysis (ESI): calculated for (M+H): C\(_{11}\)H\(_{14}\)NO\(_2\) 192.1025; found: 192.1025

For \((E)\)-\(1b\):
white solids; M.P.: 122 -125 ºC

R_r: 0.33 (30% EtOAc in Hexane, UV)

¹H NMR (500 MHz, CDCl₃) δ 7.76 – 7.70 (m, 2H), 7.66 (d, J = 10.4 Hz, 1H), 6.94 (dq, J = 12.5, 1.7 Hz, 1H), 6.91 – 6.86 (m, 2H), 5.26 (dq, J = 13.6, 6.7 Hz, 1H), 3.82 (s, 3H), 1.70 (dd, J = 6.7, 1.7 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 163.71, 162.37, 128.85, 126.02, 123.73, 113.82, 108.17, 55.42, 14.98.

HRMS analysis (ESI): calculated for (M+H): C₁₁H₁₄NO₂ 192.1025; found: 192.1028

General procedure B was used with 1.5 g (11.72 mmol) of <i>p</i>-methylbenzoyl chloride yielding 937 mg (56 %) of <i>(Z)</i>-1<i>d</i> and 468 mg (28 %) of <i>(E)</i>-1<i>d</i> after 2 steps as a white solid.

For <i>(Z)</i>-1<i>d</i>:

white solid, M.P.: 54 -58 ºC

R_r: 0.58 (30% EtOAc in Hexane, UV)

¹H NMR (500 MHz, CDCl₃) δ 7.67 (d, J = 7.9 Hz, 3H), 7.20 (d, J = 7.8 Hz, 2H), 6.88 (ddd, J = 11.0, 8.9, 2.1 Hz, 1H), 4.92 – 4.83 (m, 1H), 2.36 (s, 3H), 1.67 (dd, J = 7.0, 1.9 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 164.33, 142.40, 131.06, 129.33, 127.04, 122.31, 105.89, 21.47, 10.99.

HRMS analysis (ESI): calculated for (M+H): C₁₁H₁₄NO 176.1075; found: 176.1073

For <i>(E)</i>-1<i>d</i>:

white solid, M.P.: 117 - 122 ºC

R_r: 0.47 (30% EtOAc in Hexane, UV)

¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, J = 10.3 Hz, 1H), 7.67 (d, J = 7.8 Hz, 2H), 7.17 (d, J = 7.8 Hz, 2H), 6.91 (t, J = 12.2 Hz, 1H), 5.29 (dq, J = 13.6, 6.7 Hz, 1H), 2.35 (s, 3H), 1.68 (d, J = 6.7 Hz, 3H).
13C NMR (126 MHz, CDCl₃) δ 164.31, 142.18, 130.94, 129.23, 127.08, 123.71, 108.62, 21.46, 14.99.

HRMS analysis (ESI): calculated for (M+H): C₁₁H₁₄NO 176.1075; found: 176.1073

General procedure B was used with 1 g (6.3 mmol) of o-fluorobenzoyl chloride yielding 332 mg (29 %) of (Z)-1e after 2 steps as a colorless crystal.

colorless crystal, M.P.: 30 - 35 °C

R_f: 0.77 (30% EtOAc in Hexane, UV)

1H NMR (500 MHz, CDCl₃) δ 8.32 (s, 1H), 8.15 (tt, J = 8.0, 1.4 Hz, 1H), 7.53 – 7.45 (m, 1H), 7.28 (td, J = 7.6, 1.1 Hz, 1H), 7.14 (ddd, J = 12.6, 8.3, 1.2 Hz, 1H), 6.97 (m, 1H), 5.00 – 4.87 (m, 1H), 1.69 (dd, J = 7.1, 1.8 Hz, 3H).

13C NMR (126 MHz, CDCl₃) δ 161.72, 160.09 (d, J = 3.7 Hz), 159.76, 133.77 (d, J = 9.7 Hz), 132.39 (d, J = 1.9 Hz), 125.06 (d, J = 3.2 Hz), 122.01, 116.06 (d, J = 25 Hz), 106.82, 11.01.

HRMS analysis (ESI): calculated for (M+H): C₁₀H₁₁NOF 180.0825; found: 180.0826

General procedure C: Freshly distilled N-vinyl formamide (1 equiv), Et₃N (1.2 equiv), DMAP (5 mol%) and anhydrous THF (1M) were added to a round bottom flask. The resulting mixture was cooled to 0 °C. Acyl chloride (1.2 equiv) was then slowly added and the mixture was stirred at 0-5 °C for 2 h, 5N NaOH solution was added at 0 °C and the solution was stirred for another 2 h. Organic layers were separated and dried over Na₂SO₄ and concentrated under vacuo. The residue was isolated by silica gel column chromatography.

General procedure C was used with 543 mg (7.64 mmol) of N-vinylformamide yielding 788 mg (58 %) of 1c as a white solid.
White solid, M.P.: 76 - 83 ºC

R\textsubscript{f}: 0.32 (30% EtOAc in Hexane, UV)

1H NMR (500 MHz, CDCl\textsubscript{3}) \(\delta\) 8.42 (d, \(J = 10.5\) Hz, 1H), 7.83 – 7.70 (m, 2H), 7.21 – 7.06 (m, 1H), 6.88 – 6.78 (m, 2H), 4.76 (d, \(J = 15.8\) Hz, 1H), 4.43 (d, \(J = 8.7\) Hz, 1H), 3.78 (s, 3H).

13C NMR (126 MHz, CDCl\textsubscript{3}) \(\delta\) 164.47, 162.54, 129.29, 129.19, 125.62, 113.80, 95.88, 55.40.

HRMS analysis (ESI): calculated for (M+Na): C\textsubscript{10}H\textsubscript{11}NO\textsubscript{2}Na 200.0687; found: 200.0679

General procedure C was used with 668 mg (9.4 mmol) of \(N\)-vinylformamide and propanoyl chloride 1 g (10.8 mmol) yielding 120 mg (29%) of 1g as a purplish liquid.

R\textsubscript{f}: 0.30 (30% EtOAc in Hexane, UV)

1H NMR (500 MHz, CDCl\textsubscript{3}) \(\delta\) 9.23 (s, 1H), 6.50 (ddd, \(J = 15.9, 8.8, 0.6\) Hz, 1H), 5.42 (dd, \(J = 15.9, 0.7\) Hz, 1H), 5.35 – 5.24 (m, 1H), 2.66 (q, \(J = 7.2\) Hz, 2H), 1.18 (t, \(J = 7.2\) Hz, 3H).

13C NMR (126 MHz, CDCl\textsubscript{3}) \(\delta\) 171.90, 128.72, 95.17, 29.42, 9.50.

HRMS analysis (ESI): calculated for (M+H): C\textsubscript{5}H\textsubscript{10}NO 100.0762; found: 100.0754

General procedure C was used with 600 mg (8.44 mmol) of \(N\)-vinylformamide and \textit{iso}-butyryl chloride 1.03 g (9.7 mmol) yielding 563 mg (59%) of 1h as a white solid.

White solid, M.P.: 40 – 45 ºC

R\textsubscript{f}: 0.47 (30% EtOAc in Hexane, UV)

1H NMR (500 MHz, CDCl\textsubscript{3}) \(\delta\) 7.19 (d, \(J = 47.1\) Hz, 1H), 6.97 (ddd, \(J = 15.8, 10.8, 8.7\) Hz, 1H), 4.58 (d, \(J = 15.8\) Hz, 1H), 4.37 (d, \(J = 8.7\) Hz, 1H), 2.37 (p, \(J = 6.9\) Hz, 1H), 1.16 (d, \(J = 7.0\) Hz, 6H).

13C NMR (126 MHz, CDCl\textsubscript{3}) \(\delta\) 174.39, 128.78, 94.90, 35.56, 19.35.
General procedure C was used with 1 g (14.1 mmol) of \(N\)-vinylformamide and valeroyl chloride 1.95 g (16.2 mmol) yielding 310 mg (17 %) of 1i as a white solid.

White solid, M.P.: 41 – 45 °C

\(R_f\) : 0.44 (30% EtOAc in Hexane, UV)

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta 7.07 \sim 6.89 (m, 3H), 4.56 (dd, J = 15.8, 0.8 Hz, 1H), 4.36 (dd, J = 8.2, 0.8 Hz, 1H), 2.25 – 2.14 (m, 2H), 1.68 – 1.55 (m, 2H), 1.34 (h, J = 7.4 Hz, 2H), 0.90 (t, J = 7.4 Hz, 3H).

\(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta 170.98, 128.64, 94.66, 36.38, 27.42, 22.36, 13.77.

HRMS analysis (ESI): calculated for (M+H): C\(_7\)H\(_{14}\)NO 128.0975; found: 128.1063

\((E)-1-(\text{prop-1-en-1-yl})\text{pyrrolidin-2-one} \ 1k\) was synthesized according to the reported literature.¹

\(R_f\) : 0.20 (30% EtOAc in Hexane, UV)

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta 6.85 (dq, J = 14.3, 1.9 Hz, 1H), 4.97 – 4.84 (m, 1H), 3.45 (dd, J = 8.6, 5.9 Hz, 2H), 2.44 (td, J = 8.1, 3.3 Hz, 2H), 2.11 – 1.98 (m, 2H), 1.69 (dt, J = 6.5, 1.6 Hz, 3H).

\(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta 172.61, 124.31, 106.83, 45.22, 31.23, 17.40, 15.19.

HRMS analysis (ESI): calculated for (M+H): C\(_7\)H\(_{12}\)NO 126.0919; found: 126.0921
1-iodohexyne was synthesized according to reported literature procedure in quantitative yield.\(^2\)

1-iodohexyne (1.15g, 5.53 mmol) was dissolved in methanol (10 mL) and pyridine (1.65 mL), followed by adding potassium diazodiimide (2.7g, 13.8 mmol) with vigorous stirring. Acetic acid (1.66 g) was added via syringe to the reaction mixture dropwise at room temperature. The reaction was followed by GC. After 8 h 15% of the hexyne was observed via GC. To the reaction 0.5 equiv of potassium diazodiimide and 1 equiv of AcOH were added. Aq. HCl (5%, 20 mL) was added and the mixture was extracted with Et\(_2\)O. The organics were washed with brine, dried over Na\(_2\)SO\(_4\) and the solvents were removed in vacuo. The residue was purified through a flash column of SiO\(_2\) (100% hexane). A pale yellow liquid was isolated as product (52% yield).

The enamide substrate 1f was synthesized accord to reported literature.\(^3\) An oven-dried 25 mL screw-cap sealed tube equipped with a Teflon-coated magnetic stir bar was charged with vinyl halide (1 equiv), amide (1.2 equiv), CuI (20 mol%), and Cs\(_2\)CO\(_3\) (2 equiv). The tube was then evacuated and backfilled with argon. 1,2-Dimethylethlenediamine(DMEDA) (40 mol%) was added into the tube followed by anhydrous THF via a syringe. The sealed tube was placed in a preheated oil bath (70 \(^\circ\)C). After stirring at the same temperature for 12 h, the reaction mixture was allowed to cool to room temperature. The reaction mixture was filtered through a thin layer of celite and washed by EtOAc. The filtrate was concentrated in vacuo. The crude residue was purified by flash chromatography, \((Z)-1f\) was given as oil in 67% yield.

R\(_f\) : 0.46 (30% EtOAc in Hexane, UV)

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.80 – 7.71 (m, 2H), 7.71 – 7.17 (m, 1H), 7.01 – 6.81 (m, 3H), 4.89 – 4.73 (m, 1H), 3.83 (s, 3H), 2.08 (qd, \(J = 7.2, 1.7\) Hz, 2H), 1.53 – 1.28 (m, 4H), 0.91 (t, \(J = 7.1\) Hz, 3H).

\(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\) 163.80, 162.46, 128.87, 126.14, 121.27, 113.89, 111.74, 55.42, 31.49, 25.55, 22.33, 13.94.

HRMS analysis (ESI): calculated for (M+H): C\(_{14}\)H\(_{20}\)NO\(_2\) 234.1494; found: 234.1497

V. HBF\(_4\) Catalyzed Proton-functionalization
Based on our proposed mechanism, we believe that HBF$_4$, putatively generated from XtalFluor-E® and alcohol, is the species that catalyzes the reaction. To verify this, HBF$_4$•OEt$_2$ (20 mol%) was used as the catalyst instead of XtalFluor-E® with different substrates. We observed comparable results to those obtained with XtalFluor-E®. Most reactions proceeded much faster than XtalFluor-E® catalyzed reactions. However, for some substrates yields are a bit lower than with XtalFluor-E® as catalysts since products are prone to decomposition under strong acidic condition.
Table S1. Comparison of yields between XtalFluor-E® and HBF₄•OE₂⁻ as catalyst

<table>
<thead>
<tr>
<th>entry</th>
<th>substrate</th>
<th>catalyst</th>
<th>Xtal-FluorE®</th>
<th>HBF₄•OE₂⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cis</td>
<td></td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>2</td>
<td>cis</td>
<td></td>
<td>91</td>
<td>98</td>
</tr>
<tr>
<td>3</td>
<td>cis</td>
<td></td>
<td>98</td>
<td>70</td>
</tr>
<tr>
<td>4</td>
<td>cis</td>
<td></td>
<td>95</td>
<td>98</td>
</tr>
<tr>
<td>5</td>
<td>cis</td>
<td></td>
<td>60</td>
<td>99</td>
</tr>
<tr>
<td>6</td>
<td>cis</td>
<td></td>
<td>86</td>
<td>75</td>
</tr>
<tr>
<td>7</td>
<td>cis</td>
<td></td>
<td>94</td>
<td>98</td>
</tr>
<tr>
<td>8</td>
<td>trans</td>
<td></td>
<td>83</td>
<td>83</td>
</tr>
<tr>
<td>9</td>
<td>cis</td>
<td></td>
<td>83</td>
<td>83</td>
</tr>
<tr>
<td>10</td>
<td>cis</td>
<td></td>
<td>98</td>
<td>64</td>
</tr>
</tbody>
</table>

* isolated yield of N,O-acetal products
VI. 19F NMR Study of XtalFluor-E® with addition of MeOH

![Figure S1](image)

Figure S1. 19F NMR spectrum of a) XtalFluor-E®; b) XtalFluor-E® + 1 equiv MeOH; c) XtalFluor-E® + 2 equiv MeOH; d) XtalFluor-E® + 4 equiv MeOH; e) XtalFluor-E® + 5 equiv MeOH; f) XtalFluor-E® + 10 equiv MeOH

VII. Reference

