Organic & Biomolecular Chemistry

Supporting Information

Oligonucleotide modifications enhance probe stability for single cell transcriptome in vivo analysis (TIVA)

S. B. Yeldella, B. K. Rublea, and I. J. Dmochowskia

aDepartment of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323, USA. E-mail: ivandmo@sas.upenn.edu
Tel: +1 215-898-6459

Contents:

Figure S1
RP-HPLC purification of crude 22/9/9 GC probe after cleavage

Figure S2
AX-HPLC purification of 22/9/9 GC probe after conjugation to (D-Arg)\textsubscript{9} cell-penetrating peptide

Figure S3
RP-HPLC purification of crude PS-22/9/9 probe after solid-phase synthesis and cleavage

Figure S4
FRET efficiencies of 18/7/7 and 22/9/9 TIVA probes in buffer, pre-photolysis

Figure S5
RP-HPLC purification of crude 22/9/9 GC probe after solid-phase synthesis and cleavage

Figure S6
AX-HPLC purification of 22/9/9 probe after conjugation to (D-Arg)\textsubscript{9} cell-penetrating peptide

Figure S5
RP-HPLC purification of cleaved 18/7/7 TIVA syntheses before and after protocol improvements

Figure S8
ESI-MS analysis of 22/9/9 + (D-Arg)\textsubscript{9} TIVA
Figure S1. RP-HPLC purification of crude 22/9/9 GC probe after solid-phase synthesis and cleavage

Separation was performed on C-18 column under a gradient of increasing acetonitrile in 0.5 M TEAA, with the product eluting at roughly 28 min.
Figure S2. AX-HPLC purification of 22/9/9 GC probe after conjugation to (D-Arg)$_9$ cell-penetrating peptide

Separation was performed on Source 15q ion-exchange column under a gradient of increasing NaClO$_4$ in 1:1 formamide:Tris-HCl buffer, with the product eluting at roughly 24 min.
Figure S3. RP-HPLC purification of crude PS-22/9/9 probe after solid-phase synthesis and cleavage

Separation was performed on C-18 column under a gradient of increasing acetonitrile in 0.5 M TEAA, with the product eluting at roughly 27 min.
Figure S4. FRET efficiencies of 18/7/7 and 22/9/9 TIVA probes in buffer, pre-photolysis

FRET efficiencies were measured for both probes at 1.0 μM in 1x STE buffer. 18/7/7 and 22/9/9 TIVA probes were synthesized according to [19].
Figure S5. RP-HPLC purification of crude 22/9/9 GC probe after solid-phase synthesis and cleavage

Separation was performed on C-18 column under a gradient of increasing acetonitrile in 0.5 M TEAA, with the product eluting at roughly 50 min.
Figure S6. AX-HPLC purification of 22/9/9 probe after conjugation to (D-Arg)$_3$ cell-penetrating peptide

Separation was performed on Source 15q ion-exchange column under a gradient of increasing NaClO$_4$ in 1:1 formamide:Tris-HCl buffer, with the product eluting at roughly 24 min.
Figure S7. RP-HPLC purification of cleaved 18/7/7 TIVA syntheses before and after protocol improvements

RP-HPLC purification of six different 18/7/7 TIVA probe syntheses, three before (A) and three after (B) protocol improvements, resulting in more consistent syntheses with higher yield. Separation was performed on a C-18 column under a gradient of increasing acetonitrile in 0.5 M.
Figure S8. ESI-MS analysis of 22/9/9 +(D-Arg)₉ TIVA

ESI-MS verified the product mass (16,913 Da predicted, 16,912 Da observed). The principal impurity corresponded to TIVA product with one missing 2' F-U (-307 Da), which is not expected to significantly impact probe performance.