SUPPORTING INFORMATION

A Coelenterazine-type Bioluminescent Probe for Nitroreductase Imaging

Xingye Yang, a Zhenzhen Li, a Tianyu Jiang, a Lupei Du, a Minyong Li a,b, *

a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China.
b State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China

Tel./Fax: (+86)- 531-8838-2076; E-mail: mli@sdu.edu.cn

CONTENT

1. Synthesis ..S-2
2. Selectivity and sensitivity assay in vitro ...S-4
3. Cytotoxicity evaluation of probes and cobalt chloride...S-4
4. NMR, ESI-HRMS and HPLC spectra ...S-5
1. Synthesis

Scheme S1: The synthesis route of NTR probes

2,8-dibenzyl-3-((4-nitrobenzyl)oxy)-6-(thiophen-2-yl)imidazo[1,2-a]pyrazine (A1)

Yield: 94.88%. Melting point: 118.3-120.0 °C, Purity: 99.83%. 1H NMR (500 MHz, DMSO-d_6) δ 8.60 (s, 1H), 8.23 (d, $J = 8.7$ Hz, 2H), 7.77 (d, $J = 3.5$ Hz, 1H), 7.74 (d, $J = 8.6$ Hz, 2H), 7.58 (d, $J = 5.0$ Hz, 1H), 7.45 (d, $J = 7.3$ Hz, 2H), 7.35 - 6.44 (m, 9H), 5.34 (s, 2H), 4.41 (s, 2H), 4.04 (d, $J = 13.5$ Hz, 2H). 13C NMR (500 MHz, DMSO-d_6) δ 152.23, 147.90, 143.94, 142.20, 139.52, 138.26, 137.26, 133.98, 131.00, 129.67, 129.04, 128.75, 128.71, 126.85, 126.60, 124.04, 123.91, 109.10, 75.36, 38.82, 32.87. HRMS m/z calcd. for C$_{31}$H$_{24}$N$_4$O$_3$S [M+H]$^+$ 533.1647, found 533.1634.

2,8-dibenzyl-6-(5-methylfuran-2-yl)-3-((4-nitrobenzyl)oxy)imidazo[1,2-a]pyrazine (A2)

Yield: 29.6%. Melting point: 117.0-119.7 °C, Purity: 99.33%. 1H NMR (500 MHz, DMSO-d_6) δ 8.24 (d, $J = 8.3$ Hz, 2H), 8.02 (s, 1H), 7.72 (d, $J = 8.2$ Hz, 2H), 7.44 (d, $J = 6.9$ Hz, 2H), 7.30-7.15 (m, 8H), 6.82 (d, $J = 2.3$ Hz, 1H), 6.21 (d, $J = 13.6$ Hz, 1H), 5.33 (s, 2H), 4.40 (s, 2H), 4.04 (d, 2H), 2.34 (s, 3H). 13C NMR (500 MHz, DMSO-d_6) δ 152.79, 152.76, 152.57, 149.98, 147.95, 144.03, 139.53, 138.30, 137.44, 133.62, 131.90, 131.11, 130.03, 129.67, 129.04, 128.75, 128.71, 126.85, 126.60, 124.15, 109.65, 108.69, 107.92, 75.63, 38.99, 32.86, 13.91. HRMS m/z calcd for C$_{32}$H$_{26}$N$_4$O$_4$ [M+H]$^+$ 531.2032, found 531.2032.

2,8-dibenzyl-3-((2-nitrobenzyl)oxy)-6-(thiophen-2-yl)imidazo[1,2-a]pyrazine (A3)

Yield: 33.6%. Melting point: 133.4-135.8 °C, Purity: 99.79%. 1H NMR (500 MHz, DMSO-d_6) δ 8.58 (s, 1H), 8.17 (d, $J = 7.3$ Hz, 1H), 8.00 -7.79 (m, 2H), 7.70 (d, $J = 10.1$ Hz, 2H), 7.58 (s, 1H), 7.46 (s, 2H), 7.24 (dd, $J = 44.5$, 23.8 Hz, 9H), 5.51 (s, 2H), 4.43 (s, 2H), 4.03 (s, 2H). 13C NMR (500 MHz, DMSO-d_6) δ 152.26, 147.83, 142.21, 139.52, 138.26, 137.10, 134.66, 134.06, 133.98, 132.15, 131.90, 130.56, 130.20, 129.68, 129.04, 128.72, 127.51, 126.86, 126.60, 125.25, 123.80, 109.05, 73.27, 38.82, 32.91. HRMS m/z calcd for C$_{32}$H$_{26}$N$_4$O$_4$ [M+H]$^+$ 533.1569, found 533.1650.
2,8-dibenzyl-3-((4,5-dimethoxy-2-nitrobenzyl)oxy)-6-(thiophen-2-yl)imidazo[1,2-a]pyrazine (A4)
Yield: 67.0%. Melting point: 126.8-130.43 °C, Purity: 99.54%. 1H NMR (500 MHz, DMSO-d_6) δ 8.56 (s, 1H), 7.75-7.67 (m, 2H), 7.58 (d, $J = 4.8$ Hz, 1H), 7.46 (d, $J = 7.6$ Hz, 2H), 7.33-7.25 (m, 3H), 7.21 (dd, $J = 14.9$, 5.8 Hz, 5H), 7.17-7.13 (m, 2H), 5.48 (s, 2H), 4.42 (s, 2H), 4.01 (s, 2H), 3.87 (s, 3H), 3.81 (s, 3H). 13C NMR (500 MHz, DMSO-d_6) δ 153.52, 152.22, 148.79, 142.22, 140.40, 139.51, 138.32, 137.13, 134.11, 133.93, 132.15, 129.65, 128.93, 128.72, 128.69, 127.47, 126.86, 126.56, 126.31, 123.76, 112.68, 109.08, 108.64, 73.46, 56.72, 56.59, 38.83, 32.86. HRMS m/z calcd for C$_{32}$H$_{26}$N$_4$O$_4$ [M+H]$^+$ 593.1780, found 593.1851.

2,8-dibenzyl-6-(5-methylfuran-2-yl)-3-((2-nitrobenzyl)oxy)imidazo[1,2-a]pyrazine (A5)
Yield: 52.2%. Melting point: 133.1-136.5 °C, Purity: 100.00%. 1H NMR (500 MHz, DMSO-d_6) δ 8.15 (d, $J = 8.1$ Hz, 1H), 8.11 (s, 1H), 7.88 (d, $J = 6.8$ Hz, 1H), 7.83 (t, $J = 7.5$ Hz, 1H), 7.68 (t, $J = 8.4$ Hz, 1H), 7.44 (d, $J = 7.3$ Hz, 2H), 7.31-7.12 (m, 8H), 6.81 (d, $J = 3.2$ Hz, 1H), 6.23 (d, $J = 3.8$ Hz, 1H), 5.50 (s, 2H), 4.41 (s, 2H), 4.03 (s, 2H), 2.34 (s, 3H). 13C NMR (500 MHz, DMSO-d_6) δ 152.77, 150.03, 147.86, 138.50, 138.33, 137.25, 134.68, 133.70, 131.94, 131.16, 130.46, 130.25, 129.66, 128.76, 128.72, 126.84, 126.61, 125.30, 109.61, 108.69, 108.02, 73.51, 38.99, 32.90, 13.97. HRMS m/z calcd for C$_{32}$H$_{26}$N$_4$O$_4$ [M+H]$^+$ 531.1954, found 531.2033.

2,8-dibenzyl-3-((4,5-dimethoxy-2-nitrobenzyl)oxy)-6-(5-methylfuran-2-yl)imidazo[1,2-a]pyrazine (A6)
Yield: 51.4%. Melting point: 154.0-155.4 °C, Purity: 99.79%. 1H NMR (500 MHz, DMSO-d_6) δ 8.06 (s, 1H), 7.68 (s, 1H), 7.43 (d, $J = 7.4$ Hz, 2H), 7.32 (s, 1H), 7.30-7.12 (m, 8H), 6.80 (d, $J = 3.1$ Hz, 1H), 6.23 (d, $J = 2.8$ Hz, 1H), 5.47 (s, 2H), 4.41 (s, 2H), 4.04 (s, 2H), 3.85 (s, 3H), 3.82 (s, 3H), 2.34 (s, 3H). 13C NMR (500 MHz, DMSO-d_6) δ 153.56, 152.74, 150.02, 148.85, 140.48, 139.53, 138.37, 137.32, 133.73, 131.93, 131.08, 129.63, 129.00, 128.72, 126.84, 126.59, 126.59, 126.31, 112.64, 109.53, 108.68, 108.01, 73.70, 56.73, 56.58, 39.04, 32.88, 13.89. HRMS m/z calcd. for C$_{32}$H$_{26}$N$_4$O$_4$ [M+H]$^+$ 591.2165, found 591.2230.
2. Selectivity and sensitivity assay *in vitro*

Figure S1. The bioluminescence intensity of probes with different concentrations of NTR. (a) bioluminescence imaging of probes with NTR in a concentration dependent manner (0, 0.039, 0.078, 0.156, 0.312, 0.625, 1.25, 2.5, 5, 10 µL); (b) bioluminescent signals measured from (a); (c) bioluminescence signals at low concentration of nitroreductase (0, 0.039, 0.078, 0.156, 0.312 µg/mL). *P*<0.05; (d) linear relationship between the bioluminescence intensity of the probe A1 and the nitroreductase concentrations (0-10 µg/mL, R²= 0.9818); (e) linear relationship between the bioluminescence intensity of probe A5 and nitroreductase concentrations (0-5 µg/mL, R²=...
0.9883); (f) nitroreductase-independent relationship between the bioluminescence intensity of probe A5; (g) bioluminescence imaging of selectivity of A5 with various relevant reductants

3. Cytotoxicity evaluation of probes and cobalt chloride

Figure S2. The cell viability of ES-2-Rluc cells after incubation with different concentrations of probes and time points.

Figure S3. The cell viability of ES-2-Rluc cells after incubation with various concentrations of CoCl₂ and time points.
4. NMR, ESI-HRMS and HPLC spectra

1HNMR spectra of A1

13CNMR spectra of A1
HRMS spectra of A1

HPLC spectra of A1

1HNMR spectra of A2
13CNMR spectra of A2

HRMS spectra of A2

HPLC spectra of A2
1HNMR spectra of A3

13CNMR spectra of A3
HRMS spectra of A3

HPLC spectra of A3

1HNMR spectra of A4
13CNMR spectra of A4

![CNMR spectra](image)

HRMS spectra of A4

![HRMS spectra](image)

HPLC spectra of A4

![HPLC spectra](image)
1HNMR spectra of A5

13CNMR spectra of A5
13CNMR spectra of A6

HRMS spectra of A6

HPLC spectra of A6