Supporting Information for

A novel approach to 5H-pyrazino[2,3-b]indoles via annihilation of 3-diazoinindolin-2-imines with 2H-azirines or 5-alkoxyisoxazoles under Rh(II) catalysis

Julia O. Ruvinskaya, Nikolai V. Rostovskii, Ilya P. Filippov, Alexander F. Khlebnikov and Mikhail S. Novikov*

St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg, 199034 Russia

*E-mail: m.novikov@spbu.ru

TABLE OF CONTENTS

General Information... 2
Synthesis of 3-diazoinindolin-2-imines 2... 2
Synthesis of 2H-azirines 3 .. 4
Synthesis of 5H-pyrazino[2,3-b]indoles 4... 5
Characterization data for 5H-pyrazino[2,3-b]indoles 4 ... 6
References.. 17
1H and 13C NMR spectra of 3-diazoinindolin-2-imines 2h–j,n,o .. 18
1H and 13C NMR spectra of azirines 3d,l .. 23
1H and 13C NMR spectra of 5H-pyrazino[2,3-b]indoles 4 .. 25
X-Ray crystal structure of compound 4j .. 58
General Information

Melting points were determined on a Stuart Melting Point Apparatus SMP30 and are uncorrected. 1H (400 MHz) and 13C (100 MHz) NMR spectra were recorded on a Bruker AVANCE 400 spectrometer in solvents indicated below. Chemical shifts (δ) are reported in parts per million downfield from tetramethylsilane. High-resolution mass spectra were recorded on a Bruker MaXis mass spectrometer, electrospray ionization, positive mode. IR spectrum was recorded on a FTIR-8400S Shimadzu spectrometer using KBr disc method. Thin-layer chromatography (TLC) was conducted on aluminum sheets precoated with SiO$_2$ ALUGRAM SIL G/UV254. Column chromatography was performed on silica gel 60 M (0.04–0.063 mm). All solvents were distilled and dried over sodium metal. 1,2-Dichloroethane was washed with concentrated H$_2$SO$_4$ and water, distilled from P$_2$O$_5$, and stored over anhydrous K$_2$CO$_3$. Acetonitrile was distilled from P$_2$O$_5$ and redistilled from K$_2$CO$_3$. DMSO was refluxed over CaH$_2$ and distilled in vacuo. The catalysts Rh$_2$(Oct)$_4$1, Rh$_2$(Piv)$_4$2, and Rh$_2$(esp)$_2$3 were prepared by the reported procedures and gave satisfactory elemental analyses. Isoxazoles 1a,b,d–f, 4c,g, 5 3-diazoindolin-2-imines 2a–g,k–m6 and azirines 3e, 7 3f,g, 8 3h, 9 3i,j, 10 3k5 were prepared by the reported procedures.

Synthesis of 3-diazoindolin-2-imines 2

General procedure for the synthesis of 3-diazoindolin-2-imines 2

3-Diazoindolin-2-imines 2 were prepared similarly to the reported procedure.6 To an oven-dried round-bottom flask equipped with a magnetic stirring bar were added corresponding indole (10 mmol), sulfonyl azide (20 mmol), and anhydrous DMSO (20 mL). The reaction mixture was stirred at 50 °C for 18 h, then quenched with water (200 mL) and extracted with CH$_2$Cl$_2$ (3 × 200 mL). The combined organic layers were dried (Na$_2$SO$_4$) and concentrated in vacuo. The crude product was purified by column chromatography on silica gel (eluent petroleum ether–EtOAc, 3:1).

Note that low conversion of indoles with electron-withdrawing substituents was observed (about 5–20%).

3-Diazoindolin-2-imines 2a–g,k–m are known compounds and have full characterization data.6

N-(3-Diazo-1-methyl-7-nitroindolin-2-ylidene)-4-methylbenzenesulfonamide (2h)

Orange solid (185 mg, yield 5%); mp 180–182 °C (dec.); R_f = 0.59 (hexane–EtOAc, 1:1); 1H NMR (CDCl$_3$) δ 7.91 (d, J = 8.2 Hz, 2H), 7.70 (d, J = 8.2 Hz, 1H), 7.44 (d, J = 7.7 Hz, 1H), 7.34 (d, J = 8.2 Hz, 2H), 7.31–7.26 (m, 1H), 3.46 (s, 3H), 2.46 (s, 3H); 13C NMR (CDCl$_3$) δ 156.0, 143.1, 139.2, 136.4, 129.5, 126.9, 126.5, 122.7, 122.3, 121.8, 120.2, 32.8, 21.5; HRMS–ESI [M + H]$^+$ calcd for C$_{16}$H$_{14}$N$_3$O$_4$S$^+$ 372.0761; found 372.0774.
N-(6-Chloro-3-diazo-1-methylindolin-2-ylidene)-4-methylbenzenesulfonamide (2i)

Orange solid (432 mg, yield 12%); mp 192–194 °C; \(R_f = 0.32 \) (hexane–EtOAc, 3:1); IR (KBr), ν/cm\(^{-1}\): 2145 (C=\(\overset{\text{N+}}{\text{N}}\)); \(^1\)H NMR (CDCl\(_3\)) δ 7.90 (d, \(J = 8.2 \) Hz, 2H), 7.32 (d, \(J = 8.2 \) Hz, 2H), 7.22–7.14 (m, 2H), 7.10 (d, \(J = 1.4 \) Hz, 1H), 3.44 (s, 3H), 2.45 (s, 3H); \(^{13}\)C NMR (CDCl\(_3\)) δ 155.5, 142.6, 139.8, 135.0, 131.8, 129.4, 126.3, 123.0, 117.5, 117.2, 110.2, 64.3, 29.1, 21.5; HRMS–ESI [M + H]\(^+\) calcd for C\(_{16}\)H\(_{14}\)ClN\(_{4}\)O\(_2\)S\(^+\) 361.0521; found 361.0530.

N-(6-Bromo-3-diazo-1-methylindolin-2-ylidene)-4-methylbenzenesulfonamide (2j)

Orange solid (525 mg, yield 13%); mp 168–170 °C (dec.); \(R_f = 0.33 \) (hexane–EtOAc, 3:1); \(^1\)H NMR (CDCl\(_3\)) δ 7.90 (d, \(J = 8.2 \) Hz, 2H), 7.35–7.29 (m, 3H), 7.23 (s, 1H), 7.10 (d, \(J = 8.1 \) Hz, 1H), 3.43 (s, 3H), 2.44 (s, 3H); \(^{13}\)C NMR (CDCl\(_3\)) δ 155.3, 142.7, 139.8, 135.3, 129.4, 126.4, 125.8, 119.1, 117.9, 117.8, 113.0, 64.3, 29.1, 21.5; HRMS–ESI [M + H]\(^+\) calcd for C\(_{16}\)H\(_{14}\)BrN\(_{4}\)O\(_2\)S\(^+\) 405.0015; found 405.0028.

N-(4-Bromo-3-diazo-1-methylindolin-2-ylidene)-4-methylbenzenesulfonamide (2n)

Orange solid (242 mg, yield 6%); mp 197–198 °C (dec.); \(R_f = 0.41 \) (hexane–EtOAc, 3:1); \(^1\)H NMR (CDCl\(_3\)) δ 7.92 (d, \(J = 8.2 \) Hz, 2H), 7.32 (d, \(J = 8.2 \) Hz, 2H), 7.29–7.26 (m, 1H), 7.13 (t, \(J = 8.0 \) Hz, 1H), 7.03 (d, \(J = 8.0 \) Hz, 1H), 3.44 (s, 3H), 2.45 (s, 3H); \(^{13}\)C NMR (CDCl\(_3\)) δ 155.9, 142.6, 140.1, 135.4, 129.3, 126.9, 126.7, 126.3, 116.7, 113.0, 108.6, 29.1, 21.5; HRMS–ESI [M + H]\(^+\) calcd for C\(_{16}\)H\(_{14}\)BrN\(_{4}\)O\(_2\)S\(^+\) 405.0015; found 405.0022.

N-(3-diazo-1-methyl-1,3-dihydro-2H-pyrrrolo[2,3-b]pyridin-2-ylidene)-4-methylbenzenesulfonamide (2o)

Orange solid (229 mg, yield 7%); mp 173–174 °C (dec.); \(R_f = 0.35 \) (hexane–EtOAc, 1:1); \(^1\)H NMR (CDCl\(_3\)) δ 8.24 (dd, \(J = 5.1, 1.4 \) Hz, 1H), 7.95–7.88 (m, 2H), 7.53 (dd, \(J = 7.6, 1.4 \) Hz, 1H), 7.32 (d, \(J = 8.2 \) Hz, 2H), 7.12 (dd, \(J = 7.6, 5.1 \) Hz, 1H), 3.54 (s, 3H), 2.45 (s, 3H); \(^{13}\)C NMR (CDCl\(_3\)) δ 155.3, 146.6, 145.4, 142.8, 139.6, 129.4, 126.4, 124.0, 118.3, 113.5, 27.9, 21.5; HRMS–ESI [M + H]\(^+\) calcd for C\(_{15}\)H\(_{14}\)N\(_3\)O\(_2\)S\(^+\) 328.0863; found 328.0877.
Synthesis of 2H-azirines 3

General procedure for the synthesis of azirine-2-carboxylates 3a–d and azirine-2-carboxamide 3l
To a solution of isoxazole (0.6 mmol) in degassed acetonitrile (5 mL) was added iron(II) chloride tetrahydrate (12 mg, 0.06 mmol) under a stream of argon and the mixture was stirred at room temperature for 24 h. Then the reaction mixture was filtered through a pad of Celite and the solvent was removed in vacuo. The crude product was purified by flash chromatography on silica gel (eluent petroleum ether–EtOAc).

Azirine-2-carboxylates 3a, 5 3b, 12 3c13 are known compounds and have full characterization data.

Methyl 3-(4-nitrophenyl)-2H-azirine-2-carboxylate (3d)

Obtained from 5-methoxy-3-(4-nitrophenyl)isoxazole.14 Yellow solid (120 mg, yield 91%); mp 96–98 °C; $R_f = 0.39$ (hexane–EtOAc, 3:1); 1H NMR (CDCl$_3$) δ 8.49–8.44 (m, 2H), 8.14–8.10 (m, 2H), 3.80 (s, 3H), 3.01 (s, 1H); 13C NMR (CDCl$_3$) δ 171.2, 158.5, 150.8, 131.3, 127.9, 124.5, 52.6, 30.3; HRMS–ESI [M + Na]$^+$ calcd for C$_{10}$H$_8$N$_2$NaO$_4$ 243.0376; found 243.0382.

N-Benzyl-N-methyl-3-phenyl-2H-azirine-2-carboxamide (3l)

Obtained from N-benzyl-N-methyl-3-phenylisoxazol-5-amine.5 Yellow oil (123 mg, yield 78%); $R_f = 0.39$ (hexane–EtOAc, 1:1); 1H NMR (CDCl$_3$) δ (rotameric mixture ~ 1:1) 7.93 (d, $J = 7.1$ Hz, 1H), 7.81 (d, $J = 7.1$ Hz, 1H), 7.67–7.50 (m, 3H), 7.48–7.41 (m, 1H), 7.41–7.28 (m, 5H), 5.00 and 4.88 (AB-q, $J = 16.8$ Hz, 1H), 4.78 and 4.56 (AB-q, $J = 14.6$ Hz, 1H), 3.29 (s, 1.5H), 3.16 (s, 0.5H), 3.09 (s, 0.5H), 3.08 (s, 1.5H); 13C NMR (CDCl$_3$) δ (rotameric mixture ~ 1:1) 170.8, 170.5, 159.3, 159.0, 137.0, 136.8, 133.43, 133.37, 130.29, 130.26, 129.14, 129.06, 129.0, 128.6, 128.2, 127.8, 127.4, 126.5, 123.1, 123.0, 53.3, 51.5, 34.9, 34.6, 29.1, 29.0; HRMS–ESI [M + H]$^+$ calcd for C$_{17}$H$_{17}$N$_2$O$^+$ 265.1335; found 265.1343.
Synthesis of 5H-pyrazino[2,3-b]indoles 4

General Procedure A (for 4a−d,i−m)
Azirine 3 (0.2 mmol), 3-diazoindolin-2-imine 2a (0.4−0.8 mmol), Rh₂(OAc)₄ (4.4 mg, 0.01 mmol), and toluene (1 mL) were placed into a screw cap glass tube and heated at 140 °C (oil bath temperature) under stirring for 1 h. The solvent was removed in vacuo, and the residue was purified by column chromatography on silica gel (eluent hexane−EtOAc, 3:1) to give the desired products.

General Procedure B (for 4e−h,t−z,aa−af)
Azirine 3 (0.2 mmol), 3-diazoindolin-2-imine 2 (0.4−0.6 mmol), Rh₂(OAc)₄ (4.4 mg, 0.01 mmol), and toluene (1 mL) were placed into a screw cap glass tube and heated at 140 °C (oil bath temperature) under stirring until nitrogen evolution had ceased (about 2−5 min). Then, for elimination of p-toluenesulfinic acid, to the reaction mixture was added p-toluenesulfonic acid (14 mg, 0.08 mmol). The resulting mixture was stirred at 140 °C for 1 h and then concentrated in vacuo. The residue was purified by column chromatography on silica gel (eluent hexane−EtOAc, 3:1) to give the desired products.

General Procedure C (for 4a,n−s)
5-Alkoxyisoxazole 1 (0.2 mmol), Rh₂(OAc)₄ (4.4 mg, 0.01 mmol), and toluene (1 mL) were placed into a screw cap glass tube and heated at 140 °C (oil bath temperature) under stirring for 3 h until full consumption of isoxazole was detected (control by TLC, eluent hexane−Et₂O, 3:1). Then 3-diazoindolin-2-imine 2a (0.6 mmol) was added to the reaction mixture. The resulting mixture was stirred at 140 °C for 1 h and then concentrated in vacuo. The residue was purified by column chromatography on silica gel (eluent hexane−EtOAc, 3:1) to give the desired products.
Characterization data for 5H-pyrazino[2,3-b]indoles 4

Methyl 5-methyl-2-phenyl-5H-pyrazino[2,3-b]indole-3-carboxylate (4a)

Obtained from azirine 3a and 3-diazoindolin-2-imine 2a (0.6 mmol) according to the general procedure A (55 mg, yield 87%). Also obtained from isoxazole 1a and 3-diazoindolin-2-imine 2a (0.6 mmol) according to the general procedure C (47 mg, yield 75%). White solid; mp 143–145 °C; Rf = 0.37 (hexane–EtOAc, 3:1); 1H NMR (CDCl3) δ 8.46 (d, J = 7.8 Hz, 1H), 7.76–7.69 (m, 3H), 7.58–7.40 (m, 5H), 4.04 (s, 3H), 3.84 (s, 3H); 13C NMR (CDCl3) δ 168.1, 145.8, 143.3, 143.0, 139.2, 138.9, 136.8, 130.1, 128.8, 128.39, 128.38, 122.4, 121.2, 119.2, 109.6, 52.7, 27.8; HRMS−ESI [M + Na]+ calcd for C19H15N3NaO2 340.1056; found 340.1070.

Methyl 2-(4-methoxyphenyl)-5-methyl-5H-pyrazino[2,3-b]indole-3-carboxylate (4b)

Obtained from azirine 3b and 3-diazoindolin-2-imine 2a (0.6 mmol) according to the general procedure A as a white solid (58 mg, yield 84%); mp 151–153 °C; Rf = 0.20 (hexane–EtOAc, 3:1); 1H NMR (CDCl3) δ 8.44 (d, J = 7.8 Hz, 1H), 7.73–7.65 (m, 3H), 7.53 (d, J = 8.3 Hz, 1H), 7.44–7.38 (m, 1H), 7.08–7.03 (m, 2H), 4.02 (s, 3H), 3.90 (s, 3H), 3.87 (s, 3H); 13C NMR (CDCl3) δ 168.4, 160.0, 145.5, 143.3, 142.9, 138.9, 136.8, 131.4, 130.1 (2C), 122.4, 121.1, 119.3, 114.0, 109.6, 55.3, 52.8, 27.8; HRMS−ESI [M + H]+ calcd for C20H18N3O3 348.1343; found 348.1335.

Methyl 2-(4-bromophenyl)-5-methyl-5H-pyrazino[2,3-b]indole-3-carboxylate (4c)

Obtained from azirine 3c and 3-diazoindolin-2-imine 2a (0.4 mmol) according to the general procedure A as a white solid (51 mg, yield 65%); mp 167–169 °C; Rf = 0.48 (hexane–EtOAc, 3:1); 1H NMR (CDCl3) δ 8.44 (d, J = 7.8 Hz, 1H), 7.76–7.70 (m, 1H), 7.68–7.57 (m, 4H), 7.55 (d, J = 8.3 Hz, 1H), 7.43 (t, J = 7.5 Hz, 1H), 4.03 (s, 3H), 3.87 (s, 3H); 13C NMR (CDCl3) δ 167.8, 144.7, 143.5, 143.2, 138.9, 138.0, 137.0, 131.6, 130.5, 130.4, 122.9, 122.5, 121.4, 119.1,
109.7, 52.9, 27.9; HRMS–ESI [M + Na]⁺ calcd for C₁₉H₁₄²⁵BrN₃NaO₂⁺ 418.0162; found 418.0169.

Methyl 5-methyl-2-(4-nitrophenyl)-5H-pyrazino[2,3-b]indole-3-carboxylate (4d)

![Chemical structure of 4d](image)

Obtained from azirine 3d and 3-diazoindolin-2-imine 2a (0.6 mmol) according to the general procedure A as a white solid (40 mg, yield 55%); mp 224–225 °C; Rₐ = 0.49 (hexane–EtOAc, 3:1); ¹H NMR (CDCl₃) δ 8.46 (d, J = 7.8 Hz, 1H), 8.41–8.35 (m, 2H), 7.92–7.85 (m, 2H), 7.81–7.75 (m, 1H), 7.60 (d, J = 8.3 Hz, 1H), 7.50–7.44 (m, 1H), 4.07 (s, 3H), 3.89 (s, 3H); ¹³C NMR (CDCl₃) δ 167.3, 147.7, 145.6, 143.7 (2C), 143.4, 138.9, 137.2, 130.8, 129.9, 123.5, 122.6, 121.7, 119.0, 109.9, 53.0, 28.0; HRMS–ESI [M + H]⁺ calcd for C₁₉H₁₅N₃O₂⁺ 363.1088; found 363.1090.

5-Methyl-2,3-diphenyl-5H-pyrazino[2,3-b]indole (4e)

![Chemical structure of 4e](image)

Obtained from azirine 3e and 3-diazoindolin-2-imine 2a (0.4 mmol) according to the general procedure B (62 mg, yield 93%). Also obtained from azirine 3e and 3-diazoindolin-2-imine 2b (0.4 mmol) according to the general procedure B (40 mg, yield 60%). White solid; mp 202–203 °C; Rₐ = 0.47 (hexane–EtOAc, 3:1); ¹H NMR (CDCl₃) δ 8.47 (d, J = 7.8 Hz, 1H), 7.70–7.64 (m, 1H), 7.55–7.49 (m, 5H), 7.43–7.35 (m, 4H), 7.34–7.29 (m, 2H), 4.02 (s, 3H); ¹³C NMR (CDCl₃) δ 148.3, 145.5, 144.3, 142.4, 140.3, 140.0, 134.1, 130.27, 130.26, 128.8, 128.1, 128.0 (2C), 127.5, 121.9, 120.7, 119.8, 109.3, 27.6; HRMS–ESI [M + H]⁺ calcd for C₂₃H₁₈N₃⁺ 336.1495; found 336.1507.

3-(4-Chlorophenyl)-5-methyl-2-phenyl-5H-pyrazino[2,3-b]indole (4f)

![Chemical structure of 4f](image)

Obtained from azirine 3f and 3-diazoindolin-2-imine 2a (0.4 mmol) according to the general procedure B as a white solid (73 mg, yield 99%); mp 198–200 °C; Rₐ = 0.40 (hexane–EtOAc, 3:1); ¹H NMR (CDCl₃) δ 8.46 (d, J = 7.8 Hz, 1H), 7.71–7.64 (m, 1H), 7.60–7.51 (m, 5H), 7.43–7.35 (m, 4H), 7.34–7.29 (m, 2H), 4.02 (s, 3H); ¹³C NMR (CDCl₃) δ 146.9, 145.3, 144.3, 142.5, 140.1, 138.5, 134.4, 134.2, 131.6, 130.2, 129.0, 128.31, 128.28, 127.7, 122.0, 120.9, 119.7, 109.4, 27.6; HRMS–ESI [M + H]⁺ calcd for C₂₃H₁₇³⁵ClN₃⁺ 370.1106; found 370.1119.
2-(4-Chlorophenyl)-5-methyl-3-phenyl-5H-pyrazino[2,3-b]indole (4g)

Obtained from azirine 3g and 3-diazoindolin-2-imine 2a (0.6 mmol) according to the general procedure B as a white solid (51 mg, yield 69%); mp 220–222 °C; $R_f = 0.65$ (hexane–EtOAc, 3:1); 1H NMR (CDCl$_3$) δ 8.44 (d, $J = 7.8$ Hz, 1H), 7.70–7.64 (m, 1H), 7.57–7.51 (m, 3H), 7.50–7.45 (m, 2H), 7.43–7.35 (m, 4H), 7.34–7.29 (m, 2H), 4.02 (s, 3H); 13C NMR (CDCl$_3$) δ 148.3, 144.4, 144.1, 142.4, 139.8, 138.8, 134.2, 133.6, 131.6, 130.2, 129.0, 128.33, 128.25 (2C), 121.9, 120.9, 119.7, 109.4, 27.6; HRMS–ESI [M + H]$^+$ calcd for C$_{23}$H$_{17}$ClN$_3$ $^+$ 370.1106; found 370.1119.

3,5-Dimethyl-2-phenyl-5H-pyrazino[2,3-b]indole (4h)

Obtained from azirine 3h and 3-diazoindolin-2-imine 2a (0.4 mmol) according to the general procedure B as a white solid (40 mg, yield 73%); mp 150–151 °C; $R_f = 0.41$ (hexane–EtOAc, 3:1); 1H NMR (CDCl$_3$) δ 8.40 (d, $J = 7.8$ Hz, 1H), 7.69–7.66 (m, 2H), 7.65–7.60 (m, 1H), 7.56–7.48 (m, 3H), 7.48–7.43 (m, 1H), 7.40–7.34 (m, 1H), 3.99 (s, 3H), 2.77 (s, 3H); 13C NMR (CDCl$_3$) δ 147.1, 146.2, 144.4, 141.6, 140.3, 133.3, 129.5, 128.30, 128.29, 128.27, 127.8, 121.5, 120.6, 119.9, 109.2, 27.4, 23.8; HRMS–ESI [M + H]$^+$ calcd for C$_{18}$H$_{16}$N$_3$ $^+$ 274.1339; found 274.1352.

5-Methyl-2-(4-methylphenyl)-5H-pyrazino[2,3-b]indole (4i)

Azirine 3i (0.2 mmol), 3-diazoindolin-2-imine 2a (0.24 mmol), Rh$_2$(OAc)$_4$ (4.4 mg, 0.01 mmol), and 1,2-dichloroethane (1 mL) were placed into a screw cap glass tube and heated at 115 °C (oil bath temperature) under stirring for 1 h. The solvent was removed in vacuo, and the residue was purified by column chromatography on silica gel (eluent hexane–EtOAc, 3:1) to give 4i as a white solid (20 mg, yield 37%): mp 140–142 °C; $R_f = 0.40$ (hexane–EtOAc, 3:1); 1H NMR (CDCl$_3$) δ 8.85 (s, 1H), 8.46 (d, $J = 7.8$ Hz, 1H), 8.04 (d, $J = 8.1$ Hz, 2H), 7.68–7.63 (m, 1H), 7.50 (d, $J = 8.2$ Hz, 1H), 7.43–7.34 (m, 3H), 3.98 (s, 3H), 2.47 (s, 3H); 13C NMR (CDCl$_3$) δ 145.4, 144.5, 141.9, 138.3, 137.2, 135.4, 135.3, 129.6, 128.9, 126.7, 121.9, 120.7, 119.9, 109.3, 27.5, 21.2; HRMS–ESI [M + H]$^+$ calcd for C$_{18}$H$_{16}$N$_3$ $^+$ 274.1339; found 274.1346.
2-(4-Methoxyphenyl)-5-methyl-5H-pyrazino[2,3-b]indole (4j)

Obtained from azirine 3j and 3-diazoindolin-2-imine 2a as described above for the synthesis of 4i. White solid (30 mg, yield 52%); mp 112–114 °C; $R_f = 0.30$ (hexane–EtOAc, 3:1); 1H NMR (CDCl$_3$) δ 8.83 (s, 1H), 8.46 (d, $J = 7.8$ Hz, 1H), 8.12–8.06 (m, 2H), 7.69–7.63 (m, 1H), 7.52 (d, $J = 8.2$ Hz, 1H), 7.43–7.37 (m, 1H), 7.12–7.06 (m, 2H), 4.00 (s, 3H), 3.92 (s, 3H); 13C NMR (CDCl$_3$) δ 160.0, 145.2, 144.3, 141.9, 136.8, 135.3, 130.8, 128.8, 128.0, 121.8, 120.6, 119.8, 114.3, 109.3, 55.4, 27.5; HRMS–ESI $[M + H]^+$ calcd for C$_{18}$H$_{16}$N$_3$O 290.1288; found 290.1299.

tert-Butyl 5-methyl-2-phenyl-5H-pyrazino[2,3-b]indole-3-carboxylate (4k)

Obtained from azirine 3k and 3-diazoindolin-2-imine 2a (0.6 mmol) according to the general procedure A as a white solid (50 mg, yield 70%); mp 165–166 °C; $R_f = 0.37$ (hexane–EtOAc, 3:1); 1H NMR (CDCl$_3$) δ 8.44 (d, $J = 7.8$ Hz, 1H), 7.73–7.67 (m, 3H), 7.56–7.45 (m, 4H), 7.43–7.37 (m, 1H), 4.04 (s, 3H), 1.38 (s, 9H); 13C NMR (CDCl$_3$) δ 166.6, 145.7, 143.3, 143.1, 140.9, 139.6, 136.2, 129.8, 129.2, 128.3, 128.2, 122.4, 121.0, 119.3, 109.5, 82.8, 27.8, 27.6; HRMS–ESI $[M + H]^+$ calcd for C$_{22}$H$_{22}$N$_3$O$_2$ 360.1707; found 360.1723.

N-Benzyl-N,5-dimethyl-2-phenyl-5H-pyrazino[2,3-b]indole-3-carboxamide (4l)

Obtained from azirine 3l and 3-diazoindolin-2-imine 2a (0.6 mmol) according to the general procedure A as a yellow oil (64 mg, yield 79%); $R_f = 0.51$ (hexane–EtOAc, 1:1); 1H NMR (CDCl$_3$) δ (rotameric mixture ~ 1:1.5) 8.48–8.41 (m, 1H), 7.94 (d, $J = 6.8$ Hz, 0.8H), 7.89–7.82 (m, 1.2H), 7.74–7.65 (m, 1H), 7.58–7.46 (m, 4H), 7.45–7.38 (m, 1H), 7.33–7.25 (m, 2H), 7.25–7.21 (m, 1H), 7.13–7.09 (m, 1.2H), 7.07–7.03 (m, 0.8H), 4.73 (s, 1.2H), 4.08 (s, 0.8H), 4.03 (s, 1.8H), 3.97 (s, 1.2H), 2.95 (s, 1.2H), 2.52 (s, 1.8H); 13C NMR (CDCl$_3$) δ (rotameric mixture ~ 1:1.3) 169.4, 169.0, 143.6, 143.5, 143.3, 143.09, 143.07, 142.70, 142.69, 137.97, 137.95, 136.06, 136.05, 135.9, 135.6, 129.63, 129.62, 129.2, 128.65, 128.63, 128.61, 128.52, 128.50, 128.46, 128.3, 127.6, 127.43, 127.38, 122.1, 121.10, 121.09, 119.5, 109.6, 109.5, 54.1, 50.3, 35.1, 32.2, 27.8, 27.7; HRMS–ESI $[M + H]^+$ calcd for C$_{26}$H$_{25}$N$_4$O$^+$ 407.1866; found 407.1867.
[3-(4-Bromophenyl)-1H-pyrazol-1-yl)(5-methyl-2-phenyl-5H-pyrazino[2,3-b]indol-3-yl)methanone (4m)

Obtained from azirine 3m and 3-diazoindolin-2-imine 2a (0.8 mmol) according to the general procedure A (reaction time: 5 min) as a white solid (82 mg, yield 81%); mp 171–172 °C; Rf = 0.47 (hexane–EtOAc, 3:1); 1H NMR (CDCl3) δ 8.53 (d, J = 7.8 Hz, 1H), 8.33 (d, J = 2.9 Hz, 1H), 7.78–7.70 (m, 3H), 7.58 (d, J = 8.3 Hz, 1H), 7.50–7.45 (m, 5H), 7.28–7.24 (m, 1H), 6.65 (d, J = 2.9 Hz, 1H), 4.03 (s, 3H); 13C NMR (CDCl3) δ 166.4, 155.0, 145.8, 143.3, 143.2, 140.5, 138.3, 136.9, 131.7, 130.5, 130.3, 128.7, 128.42, 128.40, 127.9, 123.4, 122.5, 121.3, 119.4, 109.7, 107.8, 27.9; HRMS–ESI [M + H]+ calcd for C27H19BrN5O+ 508.0767; found 508.0791.

Methyl 2-(2,4-dimethylphenyl)-5-methyl-5H-pyrazino[2,3-b]indole-3-carboxylate (4n)

Obtained from isoxazole 1b and 3-diazoindolin-2-imine 2a according to the general procedure C as a white solid (65 mg, yield 94%); mp 181–182 °C; Rf = 0.29 (hexane–EtOAc, 3:1); 1H NMR (CDCl3) δ 8.44 (d, J = 7.8 Hz, 1H), 7.76–7.68 (m, 1H), 7.56 (d, J = 8.3 Hz, 1H), 7.41 (t, J = 7.5 Hz, 1H), 7.22–7.08 (m, 3H), 4.06 (s, 3H), 3.80 (s, 3H), 2.42 (s, 3H), 2.21 (s, 3H); 13C NMR (CDCl3) δ 167.0, 147.3, 143.5, 143.1, 138.8, 138.0, 136.9, 136.1, 135.9, 131.0, 130.3, 129.1, 126.3, 122.6, 121.2, 119.1, 109.6, 52.6, 27.8, 21.3, 19.8; HRMS–ESI [M + H]+ calcd for C21H20N3O2+ 346.1550; found 346.1563.

Methyl 2-(2,5-dimethylphenyl)-5-methyl-5H-pyrazino[2,3-b]indole-3-carboxylate (4o)

Obtained from isoxazole 1c and 3-diazoindolin-2-imine 2a according to the general procedure C as a white solid (53 mg, yield 77%); mp 124–126 °C; Rf = 0.29 (hexane–EtOAc, 3:1); 1H NMR (CDCl3) δ 8.46 (d, J = 7.8 Hz, 1H), 7.73 (t, J = 7.7 Hz, 1H), 7.57 (d, J = 8.3 Hz, 1H), 7.42 (t, J = 7.5 Hz, 1H), 7.25–7.17 (m, 2H), 7.13 (s, 1H), 4.07 (s, 3H), 3.79 (s, 3H), 2.39 (s, 3H), 2.17 (s, 3H); 13C NMR (CDCl3) δ 166.9, 147.4, 143.5, 143.2, 138.7, 138.6, 136.9, 134.9, 133.2, 130.3, 130.0, 129.8, 129.2, 122.6, 121.2, 119.1, 109.6, 52.6, 27.8, 20.9, 19.3; HRMS–ESI [M + H]+ calcd for C21H20N3O2+ 346.1550; found 346.1558.
Methyl 2-(4-chlorophenyl)-5-methyl-5H-pyrazino[2,3-b]indole-3-carboxylate (4p)

Obtained from isoxazole 1d and 3-diazoindolin-2-imine 2a according to the general procedure C as a white solid (52 mg, yield 74%); mp 153−155 °C; R_f = 0.45 (hexane−EtOAc, 3:1); ^1H NMR (CDCl_3) δ 8.45 (d, J = 7.8 Hz, 1H), 7.78−7.71 (m, 1H), 7.68−7.63 (m, 2H), 7.57 (d, J = 8.3 Hz, 1H), 7.52−7.47 (m, 2H), 7.44 (t, J = 7.5 Hz, 1H), 4.05 (s, 3H), 3.87 (s, 3H); ^13C NMR (CDCl_3) δ 167.9, 144.7, 143.5, 143.1, 138.9, 137.5, 136.9, 134.7, 130.4, 130.2, 128.6, 122.5, 121.4, 119.1, 109.7, 52.9, 27.9; HRMS−ESI [M + H]^+ calcd for C_{19}H_{15}ClN_3O_2^+ 352.0847; found 352.0860.

Methyl 2-(4-cyanophenyl)-5-methyl-5H-pyrazino[2,3-b]indole-3-carboxylate (4q)

Obtained from isoxazole 1e and 3-diazoindolin-2-imine 2a according to the general procedure C as a white solid (36 mg, yield 53%); mp 205−206 °C; R_f = 0.30 (hexane−EtOAc, 3:1); ^1H NMR (CDCl_3) δ 8.43 (d, J = 7.8 Hz, 1H), 7.84−7.78 (m, 4H), 7.75 (t, J = 7.7 Hz, 1H), 7.57 (d, J = 8.3 Hz, 1H), 7.45 (t, J = 7.5 Hz, 1H), 4.04 (s, 3H), 3.88 (s, 3H); ^13C NMR (CDCl_3) δ 167.9, 144.7, 143.5, 143.1, 138.9, 137.5, 136.9, 134.7, 130.4, 130.2, 128.6, 122.5, 121.4, 119.1, 109.7, 52.9, 27.9; HRMS−ESI [M + H]^+ calcd for C_{20}H_{15}N_4O_2^+ 343.1190; found 343.1193.

Methyl 2-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-5-methyl-5H-pyrazino[2,3-b]indole-3-carboxylate (4r)

Obtained from isoxazole 1f and 3-diazoindolin-2-imine 2a according to the general procedure C as a white solid (62 mg, yield 83%); mp 180−182 °C; R_f = 0.30 (hexane−EtOAc, 3:1); ^1H NMR (CDCl_3) δ 8.43 (d, J = 7.8 Hz, 1H), 7.70 (t, J = 7.6 Hz, 1H), 7.52 (d, J = 8.2 Hz, 1H), 7.40 (t, J = 7.5 Hz, 1H), 7.32 (d, J = 2.0 Hz, 1H), 7.16 (dd, J = 8.3, 2.0 Hz, 1H), 6.98 (d, J = 8.3 Hz, 1H), 4.34 (s, 4H), 4.01 (s, 3H), 3.90 (s, 3H); ^13C NMR (CDCl_3) δ 168.2, 145.1, 144.1, 143.6, 143.3, 142.9, 139.0, 136.7, 132.2, 130.1, 122.4, 122.0, 121.2, 119.2, 117.9, 117.2, 109.6, 64.5, 64.3, 52.8, 27.8; HRMS−ESI [M + H]^+ calcd for C_{21}H_{18}N_3O_4^+ 376.1292 found 376.1298.
Hexyl 5-methyl-2-phenyl-5H-pyrazino[2,3-b]indole-3-carboxylate (4s)

Obtained from isoxazole 1g and 3-diazoindolin-2-imine 2a according to the general procedure C as a white solid (61 mg, yield 79%); $R_f = 0.57$ (hexane–EtOAc, 3:1); 1H NMR (CDCl$_3$) δ 8.45 (d, $J = 7.9$ Hz, 1H), 7.75–7.68 (m, 3H), 7.56–7.39 (m, 5H), 4.22 (t, $J = 6.6$ Hz, 2H), 4.03 (s, 3H), 1.51–1.42 (m, 2H), 1.34–1.07 (m, 6H), 0.89 (t, $J = 7.1$ Hz, 3H); 13C NMR (CDCl$_3$) δ 168.0, 145.7, 143.25, 143.15, 139.8, 139.1, 136.6, 130.0, 128.9, 128.40, 128.35, 122.4, 121.2, 119.3, 109.6, 66.2, 31.3, 28.1, 27.8, 25.3, 22.4, 13.9; HRMS–ESI [M + H]$^+$ calcd for C$_{24}$H$_{26}$N$_3$O$_2$+ 388.2020; found 388.2027.

5-Benzyl-2,3-diphenyl-5H-pyrazino[2,3-b]indole (4t)

Obtained from azirine 3e and 3-diazoindolin-2-imine 2c (0.4 mmol) according to the general procedure B as a white solid (59 mg, yield 72%); mp 205–206 °C; $R_f = 0.49$ (hexane–EtOAc, 3:1); 1H NMR (CDCl$_3$) δ 8.48 (d, $J = 7.8$ Hz, 1H), 7.60–7.54 (m, 5H), 7.45 (d, $J = 8.2$ Hz, 1H), 7.41–7.27 (m, 12H), 5.77 (s, 2H); 13C NMR (CDCl$_3$) δ 148.4, 145.9, 144.3, 141.6, 140.4, 139.9, 136.8, 134.0, 130.34, 130.25, 128.8, 128.7, 128.2, 128.05, 127.98, 127.61, 127.60, 127.3, 122.0, 120.9, 120.1, 110.3, 45.1; HRMS–ESI [M + H]$^+$ calcd for C$_{29}$H$_{22}$N$_3$+ 412.1808; found 412.1825.

5-Isopropyl-2,3-diphenyl-5H-pyrazino[2,3-b]indole (4u)

Obtained from azirine 3e and 3-diazoindolin-2-imine 2d (0.4 mmol) according to the general procedure B as a white solid (52 mg, yield 72%); mp 141–143 °C; $R_f = 0.63$ (hexane–EtOAc, 9:1); 1H NMR (CDCl$_3$) δ 8.48 (d, $J = 7.8$ Hz, 1H), 7.69–7.61 (m, 2H), 7.58–7.50 (m, 4H), 7.40–7.30 (m, 7H), 5.43 (sept, $J = 7.0$ Hz, 1H), 1.82 (d, $J = 7.0$ Hz, 6H); 13C NMR (CDCl$_3$) δ 147.9, 145.2, 143.9, 140.9, 140.5, 140.2, 134.0, 130.35, 130.25, 128.5, 128.1, 128.0, 127.9, 127.5, 122.1, 120.25, 120.21, 110.8, 46.0, 20.9; HRMS–ESI [M + H]$^+$ calcd for C$_{25}$H$_{22}$N$_3$+ 364.1808; found 364.1817.
5-Allyl-2,3-diphenyl-5H-pyrazino[2,3-b]indole (4v)

Obtained from azirine 3e and 3-diazoindolin-2-imine 2e (0.4 mmol) according to the general procedure B as a white solid (71 mg, yield 98%); mp 164–165 °C; $R_f = 0.57$ (hexane–EtOAc, 9:1); 1H NMR (CDCl$_3$) δ 8.46 (d, $J = 7.8$ Hz, 1H), 7.63 (t, $J = 7.7$ Hz, 1H), 7.57–7.50 (m, 5H), 7.40 (t, $J = 7.5$ Hz, 1H), 7.37–7.31 (m, 6H), 6.15–6.04 (m, 1H), 5.30–5.16 (m, 4H); 13C NMR (CDCl$_3$) δ 148.3, 145.8, 143.9, 141.7, 140.3, 140.0, 134.0, 132.4, 130.3, 130.2, 128.7, 128.1, 128.02, 127.99, 127.6, 122.0, 120.8, 119.9, 117.4, 110.2, 43.7; HRMS–ESI [M + H]$^+$ calcd for C$_{25}$H$_{20}$N$_3$ 362.1652; found 362.1660.

2,3-Diphenyl-5H-pyrazino[2,3-b]indole (4w)

Obtained from azirine 3e and 3-diazoindolin-2-imine 2f (0.4 mmol) according to the general procedure B as a white solid (29 mg, yield 45%); mp 279–281 °C; $R_f = 0.49$ (hexane–EtOAc, 3:1); 1H NMR (DMSO-d$_6$) δ 12.21 (s, 1H), 8.25 (d, $J = 7.8$ Hz, 1H), 7.65–7.58 (m, 2H), 7.46–7.39 (m, 4H), 7.37–7.28 (m, 7H); 13C NMR (DMSO-d$_6$) δ 147.9, 144.8, 144.1, 141.1, 140.1, 139.7, 133.3, 130.0, 129.9, 129.0, 127.94, 127.93, 127.91, 127.4, 121.1, 120.6, 119.3, 112.2; HRMS–ESI [M + H]$^+$ calcd for C$_{22}$H$_{16}$N$_3$ 322.1339; found 322.1351.

6-Bromo-5-methyl-2,3-diphenyl-5H-pyrazino[2,3-b]indole (4x)

Obtained from azirine 3e and 3-diazoindolin-2-imine 2g (0.4 mmol) according to the general procedure B as a white solid (72 mg, yield 87%); mp 239–241 °C; $R_f = 0.64$ (hexane–EtOAc, 9:1); 1H NMR (CDCl$_3$) δ 8.40 (d, $J = 7.7$ Hz, 1H), 7.67 (d, $J = 7.7$ Hz, 1H), 7.59–7.51 (m, 4H), 7.39–7.32 (m, 6H), 7.20 (t, $J = 7.8$ Hz, 1H), 4.43 (s, 3H); 13C NMR (CDCl$_3$) δ 149.3, 146.5, 144.8, 140.0, 139.7, 138.9, 133.8, 133.2, 130.3, 130.2, 128.25, 128.16, 128.1, 127.7, 123.0, 121.7, 120.9, 103.9, 30.7; HRMS–ESI [M + H]$^+$ calcd for C$_{23}$H$_{17}$BrN$_3$ 414.0600; found 414.0619.
5-Methyl-6-nitro-2,3-diphenyl-5H-pyrazino[2,3-b]indole (4y)

Obtained from azirine 3e and 3-diazoindolin-2-imine 2h (0.4 mmol) according to the general procedure B as a white solid (50 mg, yield 66%); mp 244–245 °C; \(R_f = 0.49 \) (hexane–EtOAc, 3:1); \(^1\)H NMR (CDCl\(_3\)) \(\delta \) 8.71 (dd, \(J = 7.7, 2.0 \) Hz, 1H), 8.17 (dd, \(J = 8.0, 2.0 \) Hz, 1H), 7.59–7.51 (m, 4H), 7.44 (t, \(J = 7.9 \) Hz, 1H), 7.40–7.33 (m, 6H), 4.11 (s, 3H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta \) 150.4, 147.8, 145.6, 139.6, 139.3, 136.5, 133.7, 132.5, 130.2, 130.1, 128.6, 128.2, 128.1, 126.8, 125.3, 124.3, 119.9, 31.4; HRMS–ESI \([M + H]^+\) calcd for C\(_{23}\)H\(_{17}\)N\(_4\)O\(_2\)\(^+\) 381.1346; found 381.1352.

7-Chloro-5-methyl-2,3-diphenyl-5H-pyrazino[2,3-b]indole (4z)

Obtained from azirine 3e and 3-diazoindolin-2-imine 2i (0.4 mmol) according to the general procedure B as a white solid (50 mg, yield 68%); mp 232–234 °C; \(R_f = 0.57 \) (hexane–EtOAc, 9:1); \(^1\)H NMR (CDCl\(_3\)) \(\delta \) 8.35 (d, \(J = 8.3 \) Hz, 1H), 7.58–7.49 (m, 5H), 7.38–7.31 (m, 6H), 4.00 (s, 3H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta \) 148.7, 146.1, 144.6, 142.8, 140.1, 139.8, 134.7, 133.5, 130.23, 130.18, 128.19, 128.16, 128.1, 127.7, 122.8, 121.4, 118.3, 109.7, 27.7; HRMS–ESI \([M + H]^+\) calcd for C\(_{23}\)H\(_{17}\)\(^{35}\)ClN\(_3\)\(^+\) 370.1106; found 370.1105.

7-Bromo-5-methyl-2,3-diphenyl-5H-pyrazino[2,3-b]indole (4aa)

Obtained from azirine 3e and 3-diazoindolin-2-imine 2j (0.4 mmol) according to the general procedure B as a white solid (53 mg, yield 64%); mp 250–252 °C; \(R_f = 0.59 \) (hexane–EtOAc, 9:1); \(^1\)H NMR (CDCl\(_3\)) \(\delta \) 8.29 (d, \(J = 8.3 \) Hz, 1H), 7.69 (s, 1H), 7.58–7.48 (m, 5H), 7.38–7.31 (m, 6H), 4.00 (s, 3H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta \) 148.8, 146.2, 144.4, 142.9, 140.1, 139.8, 133.5, 130.23, 130.19, 128.21, 128.17, 128.1, 127.7, 124.1, 123.0, 122.7, 118.7, 112.7, 27.7; HRMS–ESI \([M + H]^+\) calcd for C\(_{23}\)H\(_{17}\)\(^{79}\)BrN\(_3\)\(^+\) 414.0600; found 414.0594.
5,8-Dimethyl-2,3-diphenyl-5H-pyrazino[2,3-b]indole (4ab)

```
Me
N=N
N
Ph
N
Ph
Me
```

Obtained from azirine 3e and 3-diazoindolin-2-imine 2k (0.4 mmol) according to the general procedure B as a white solid (67 mg, yield 96%); mp 231–232 °C; Rf = 0.52 (hexane–EtOAc, 3:1); ¹H NMR (CDCl₃) δ 8.27 (s, 1H), 7.59–7.51 (m, 4H), 7.48 (dd, J = 8.4, 1.6 Hz, 1H), 7.42 (d, J = 8.4 Hz, 1H), 7.38–7.31 (m, 6H), 4.01 (s, 3H), 2.59 (s, 3H); ¹³C NMR (CDCl₃) δ 148.1, 145.2, 144.5, 140.7, 140.4, 140.1, 134.0, 130.3, 130.24, 130.23, 130.17, 128.1, 128.02, 127.97, 127.4, 121.7, 119.8, 109.0, 27.6, 21.3; HRMS–ESI [M + H⁺] calcd for C₂₄H₂₀N₃⁺ 350.1652; found 315.1660.

8-Methoxy-5-methyl-2,3-diphenyl-5H-pyrazino[2,3-b]indole (4ac)

```
MeO
N=N
N
Ph
N
Ph
```

Obtained from azirine 3e and 3-diazoindolin-2-imine 2l (0.4 mmol) according to the general procedure B as a white solid (62 mg, yield 85%); mp 199–200 °C; Rf = 0.43 (hexane–EtOAc, 3:1); ¹H NMR (CDCl₃) δ 7.94 (d, J = 2.4 Hz, 1H), 7.59–7.50 (m, 4H), 7.44 (d, J = 7.9 Hz, 1H), 7.38–7.28 (m, 7H), 4.01 (s, 3H), 3.97 (s, 3H); ¹³C NMR (CDCl₃) δ 154.8, 148.3, 145.1, 144.6, 140.4, 140.0, 137.2, 133.9, 130.3, 130.2, 128.1, 128.02, 128.01, 127.5, 119.9, 118.9, 110.3, 103.5, 56.0, 27.6; HRMS–ESI [M + H⁺] calcd for C₂₄H₂₀N₃O⁺ 366.1601; found 366.1613.

8-Bromo-5-methyl-2,3-diphenyl-5H-pyrazino[2,3-b]indole (4ad)

```
Br
N=N
N
Ph
N
Ph
```

Obtained from azirine 3e and 3-diazoindolin-2-imine 2m (0.4 mmol) according to the general procedure B as a white solid (82 mg, yield 99%); mp 228–229 °C; Rf = 0.63 (hexane–EtOAc, 3:1); ¹H NMR (CDCl₃) δ 8.58 (d, J = 1.9 Hz, 1H), 7.73 (dd, J = 8.7, 1.9 Hz, 1H), 7.58–7.49 (m, 4H), 7.40 (d, J = 8.7 Hz, 1H), 7.37–7.34 (m, 6H), 4.01 (s, 3H); ¹³C NMR (CDCl₃) δ 149.2, 146.1, 144.4, 140.8, 140.0, 139.7, 132.8, 131.4, 130.24, 130.16, 128.3, 128.2, 128.1, 127.7, 124.6, 121.3, 113.7, 110.9, 27.7; HRMS–ESI [M + H⁺] calcd for C₂₅H₁₇⁷⁹BrN₃⁺ 414.0600; found 414.0614.
9-Bromo-5-methyl-2,3-diphenyl-5H-pyrazino[2,3-b]indole (4ae)

Obtained from azirine 3e and 3-diazoindolin-2-imine 2n (0.6 mmol) according to the general procedure B as a white solid (69 mg, yield 84%); mp 235–236 °C; \(R_f = 0.59 \) (hexane–EtOAc, 3:1); \(^1H \) NMR (CDCl\(_3\)) \(\delta 7.66–7.54 \) (m, 5H), 7.52–7.46 (m, 2H), 7.41–7.30 (m, 6H), 4.04 (s, 3H); \(^{13}C \) NMR (CDCl\(_3\)) \(\delta 148.7, 145.6, 144.0, 143.2, 140.05, 130.4, 130.2, 128.9, 128.3, 128.2, 128.0, 127.6, 124.9, 118.7, 117.1, 108.2, 27.7; HRMS–ESI [M + H]+ calcd for C\(_{23}\)H\(_{17}\)BrN\(_3\)+ 414.0600; found 414.0617.

5-Methyl-2,3-diphenyl-5H-pyrido[3',2':4,5]pyrrolo[2,3-b]pyrazine (4af)

Obtained from azirine 3e and 3-diazoindolin-2-imine 2o (0.5 mmol) according to the general procedure B as a white solid (59 mg, yield 88%); mp 203–204 °C; \(R_f = 0.20 \) (hexane–EtOAc, 3:1); \(^1H \) NMR (CDCl\(_3\)) \(\delta 8.72–8.66 \) (m, 2H), 7.60–7.48 (m, 4H), 7.39–7.31 (m, 7H), \(\delta 4.13 \) (s, 3H); \(^{13}C \) NMR (CDCl\(_3\)) \(\delta 152.9, 149.5, 148.8, 146.7, 144.2, 140.0, 139.6, 132.0, 130.3, 130.12, 130.07, 128.3, 128.2, 128.1, 127.8, 116.8, 113.5, 26.5; HRMS–ESI [M + H]+ calcd for C\(_{22}\)H\(_{17}\)N\(_3\)+ 337.1448; found 337.1463.

Methyl 5-methyl-4-(4-phenylsulfonyl)-2-phenyl-4,5-dihydro-3H-pyrazino[2,3-b]indole-3-carboxylate (5a)

Obtained from azirine 3a and 3-diazoindolin-2-imine 2a (0.6 mmol) according to the general procedure A (temperature: 110 °C, reaction time: 2 min) as a white solid (53 mg, yield 56%); mp 100–103 °C; \(R_f = 0.47 \) (hexane–EtOAc, 3:1); \(^1H \) NMR (CDCl\(_3\)) \(\delta 7.82 \) (d, \(J = 7.8 \) Hz, 1H), 7.74–7.69 (m, 2H), 7.45 (d, \(J = 8.2 \) Hz, 1H), 7.43–7.34 (m, 4H), 7.28–7.23 (m, 1H), \(\delta 7.11 \) (d, \(J = 8.2 \) Hz, 2H), 6.77 (d, \(J = 8.2 \) Hz, 2H), 6.03 (s, 1H), 4.04 (s, 3H), 3.60 (s, 3H), 2.22 (s, 3H); \(^{13}C \) NMR (CDCl\(_3\)) \(\delta 166.8, 147.5, 145.0, 136.6, 135.7, 132.8, 129.7, 129.2, 128.1, 127.0, 126.8, 124.6, 123.0, 122.1, 120.9, 120.0, 118.4, 110.1, 58.1, 53.2, 31.2, 21.5; HRMS–ESI [M + H]+ calcd for C\(_{26}\)H\(_{24}\)N\(_3\)O\(_4\)S\(_2\)+ 474.1482; found 474.1499.
References

1H and 13C NMR spectra of 3-diazooindolin-2-imines 2h–j, n, o

1H and 13C NMR spectra of compound 2h
1H and 13C NMR spectra of compound 2i
1H and 13C NMR spectra of compound 2j
1H and 13C NMR spectra of compound 2n
1H and 13C NMR spectra of azirines 3d, l

1H and 13C NMR spectra of compound 3d

![NMR Spectra of Compound 3d](image-url)
1H and 13C NMR spectra of compound 3l (rotameric mixture ~ 1:1)
1H and 13C NMR spectra of 5H-pyrazino[2,3-b]indoles 4

1H and 13C NMR spectra of compound 4a
1H and 13C NMR spectra of compound 4b
1H and 13C NMR spectra of compound 4c
1H and 13C NMR spectra of compound 4d
1H and 13C NMR spectra of compound 4e
^{1}H and ^{13}C NMR spectra of compound 4f
1H and 13C NMR spectra of compound 4g
\(^1\)H and \(^{13}\)C NMR spectra of compound 4h
1H and 13C NMR spectra of compound 4i
1H and 13C NMR spectra of compound 4j
1H and 13C NMR spectra of compound 4k
1H and 13C NMR spectra of compound 4l (rotameric mixture ~ 1:1.5)
1H and 13C NMR spectra of compound 4m
1H and 13C NMR spectra of compound 4n
1H and 13C NMR spectra of compound 40
1H and 13C NMR spectra of compound 4p
1H and 13C NMR spectra of compound 4q
1H and 13C NMR spectra of compound 4r
1H and 13C NMR spectra of compound 4s
1H and 13C NMR spectra of compound 4t
1H and 13C NMR spectra of compound 4u
1H and 13C NMR spectra of compound 4v
1H and 13C NMR spectra of compound 4w
1H and 13C NMR spectra of compound 4x
1H and 13C NMR spectra of compound 4y
1H and 13C NMR spectra of compound 4z
1H and 13C NMR spectra of compound \textbf{4aa}
1H and 13C NMR spectra of compound 4ab
1H and 13C NMR spectra of compound 4ac
1H and 13C NMR spectra of compound 4ad
1H and 13C NMR spectra of compound 4ae
1H and 13C NMR spectra of compound 4af
1H and 13C NMR spectra of compound 5a
X-Ray crystal structure of compound 4j