Iodine promoted dual oxidative C (sp³) - H amination of 2-methyl-3-aryl quinazolin-4(3H)-ones: A facile route to 1,4-diarylimidazo [1,5-a]quinazoline-5(4H)-ones

Kavitha Donthiboina,a,b Namballa Hari Krishna,a,b Siddiq Pasha Shaik,b Jagadeesh Babu Nanubolu,c Nagula Shankaraiah,*a Ahmed Kamal* a,b

aDepartment of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad - 500 037, India.
bDepartment of Medicinal Chemistry and Biotechnology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.
cLaboratory of X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.

Corresponding authors: Dr. Ahmed Kamal, E-mail: ahmedkamal@iict.res.in; Dr. Nagula Shankaraiah, shankar@niperhyd.ac.in; shankarnbs@gmail.com

Contents

3. X-ray crystallographic information and data 2 - 3
4. Copies of spectra 10-35
X-ray crystallographic information and data

Figure caption: The molecular structure of KA129 with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.

Crystal data for KA129: C_{23}H_{13}ClN_{3}O, M = 439.81, crystal size 0.43 x 0.32 x 0.22 mm^3, triclinic, space group P\overline{1} (No. 2), a = 9.584(5), b = 9.866(4), c = 11.366(6)Å, α = 80.384(9), β = 84.059(12), γ = 66.028(10)°, V = 967.5(8) Å^3, Z = 2, De = 1.510 g/cm^3, F_{000} = 448, PHOTON 100 area detector, MoKa radiation, λ = 0.71073 Å, T = 293(2)K, 2θ_{max} = 61°, 24696 reflections collected, 5909 unique (R_{int} = 0.019), Final Goof = 1.05, RI = 0.0424, wR2 = 0.1245, R indices based on 4261 reflections with I >2σ(I) (refinement on F^2), 280 parameters, μ = 0.247 mm^{-1}, Min. and Max. Resd.Dens. = -0.35, 0.71 e/Å^3. CCDC 1579886 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures/

Data collection and structure solution of KA129: Single crystal X-ray data were collected at room temperature on a Bruker D8 QUEST equipped with a four circle kappa diffractometer and Photon 100 detector. An 1μm microfocus Mo source (λ=0.71073Å) supplied the multi-mirror monochromated incident beam. A combination of Phi and Omega scans were used to collect the necessary data. Unit cell dimensions were determined using 9954 reflections. Integration and scaling of intensity data were accomplished using SAINT program. The structures were solved by Direct Methods using SHELXS97 and refinement was carried out by full-matrix least-squares technique using SHELXL-2014/7. Anisotropic displacement parameters were included for all non-hydrogen atoms. All H atoms were positioned geometrically and treated as riding on their parent C atoms with C-H distances of 0.93--0.97 Å, and with U_{iso}(H) = 1.2U_{eq} (C) or 1.5U_{eq} for methyl atoms.

Copies of spectra

1HNMR (400 MHz, CDCl$_3$) spectrum of compound 3a

13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3a
1HNMR (400 MHz, CDCl$_3$) spectrum of compound 3b

13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3b
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 3c

13C NMR (125 MHz, CDCl$_3$) spectrum of compound 3c
1HNMR (500 MHz, CDCl$_{3}$) spectrum of compound 3d

13C NMR (125 MHz, CDCl$_{3}$) spectrum of compound 3d
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 3e

13C NMR (125 MHz, CDCl$_3$) spectrum of compound 3e
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 3f

13C NMR (125 MHz, CDCl$_3$) spectrum of compound 3f
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 3g

13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3g
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 3h

13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3h
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 3i

13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3i
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 3j

13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3j
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 3k

13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3k
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 3l

13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3l
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 3m

13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3m
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 3n

13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3n
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 3o

13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3o
$\text{1H NMR (500 MHz, CDCl$_3$) spectrum of compound 3p}$

$\text{13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3p}$
$\text{H NMR (500 MHz, CDCl}_3\text{) spectrum of compound 3q}$

$\text{C NMR (100 MHz, CDCl}_3\text{) spectrum of compound 3q}$
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 3r

13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3r
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 3s

13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3s
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 3t

13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3t
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 3u

13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3u
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 3v

13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3v
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 3w

13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3w
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 3x

13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3x
^{1}H NMR (500 MHz, CDCl$_3$) spectrum of compound 3y

^{13}C NMR (100 MHz, CDCl$_3$) spectrum of compound 3y
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 3z

13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3z