Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Direct and Highly Diastereoselective Synthesis of 3,4-Epoxy-2-Piperidones. Application to the Total Synthesis and Absolute Configurational Assignment of 3α,4α-Epoxy-5β-Pipermethystine

Urbano Osorio-Nieto,^a Laura Y. Vázquez-Amaya,^a Herbert Höpfl,^b Leticia Quintero,^a and Fernando Sartillo-Piscil.^a*

^aCentro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP). 14 Sur Esq. San Claudio, Col. San Manuel. 72570, Puebla, México.

^bCentro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos. Avenida Universidad 1001, Col. Chamilpa. 62209, Cuernavaca, México.

Table of Contents

General considerations	S-3
X-ray crystallographic data	S-3
References	S-3
Table 1. Selected crystallographic data for compounds 13 , $(1'S, 3R, 4R, 5S)$ -20	and
(1' <i>S</i> ,3 <i>S</i> ,4 <i>S</i> ,5 <i>R</i>)- 20	S-4
Figure S1	S-5
Figure S2	S-5
Figure S3	S-6
¹ H and ¹³ C NMR spectra of compound 10	S-7
¹ H and ¹³ C NMR spectra of compound 11	S-8
¹ H and ¹³ C NMR spectra of compound 12	S-9
¹ H and ¹³ C NMR spectra of compound 7	S -10
¹ H and ¹³ C NMR spectra of compound 13	S -11
¹ H and ¹³ C NMR spectra of compound (1´S)- 18	S-12
¹ H and ¹³ C NMR spectra of compound (1´S)- 19	S-13
¹ H and ¹³ C NMR spectra of compound (1' <i>S</i> ,5 <i>R</i>)- 14	S-14
¹ H and ¹³ C NMR spectra of compound (1' <i>S</i> ,5 <i>S</i>)- 14	S-15
¹ H and ¹³ C NMR spectra of compound (1' <i>S</i> ,5 <i>R</i>)- 21	S -16
¹ H and ¹³ C NMR spectra of compound (1' <i>S</i> ,5 <i>S</i>)- 21	S-17
¹ H and ¹³ C NMR spectra of compound (1' <i>S</i> ,3 <i>R</i> ,4 <i>S</i> ,5 <i>S</i>)- 15	S-18
¹ H and ¹³ C NMR spectra of compound (1' <i>S</i> ,3 <i>S</i> ,4 <i>R</i> ,5 <i>R</i>)- 15	S-19
¹ H and ¹³ C NMR spectra of compound (1' <i>S</i> ,3 <i>R</i> ,4 <i>R</i> ,5 <i>S</i>)- 20	S -20
¹ H and ¹³ C NMR spectra of compound (1'S,3S,4S,5R)- 20	S -21
¹ H and ¹³ C NMR spectra of compound (1' <i>S</i> ,3 <i>R</i> ,4 <i>R</i> ,5 <i>S</i>)- 22	S -22
¹ H and ¹³ C NMR spectra of compound (1'S,3S,4S,5R)-22	S -23
¹ H and ¹³ C NMR spectra of compound $(3R, 4R, 5S)$ - 23	S-24
¹ H and ¹³ C NMR spectra of compound (-)-(3 <i>R</i> ,4 <i>R</i> ,5 <i>S</i>)- 3	.S-25

General considerations: Unless otherwise stated, ¹H NMR and ¹³C NMR spectra were obtained in a 500 MHz spectrometer. All samples were analyzed in CDCl₃ with TMS as internal reference using a relative scale in parts per million (ppm) for the chemical shift.

Single-Crystal X-ray Diffraction Analysis.

Single crystals of compounds **13**, (1'*S*,3*R*,4*R*,5*S*)-**20** and (1'*S*,3*S*,4*S*,5*R*)-**20** were grown from solutions in CH₂Cl₂ and hexanes. Single-crystal X-ray diffraction studies were carried out on an Agilent Technologies SuperNova diffractometer equipped with a CCD area detector (EosS2) using Cu-K α radiation ($\lambda = 1.54184$ Å). Frames were collected at *T* = 293 K for **13** and *T* = 100 K for the remaining compounds. The measured intensities were reduced to *F*² and corrected for absorption using spherical harmonics (CrysAlisPro).¹ Intensities were corrected for Lorentz and polarization effects. Structure solution, refinement, and data output were performed with the OLEX2² program package using SHELXT-2014³ for the structure solution and SHELXL-2008⁴ for the refinement. Nonhydrogen atoms were refined anisotropically. All hydrogen atoms were placed in geometrically calculated positions using the riding model. Figures were created with Diamond.⁵

Crystallographic data for the crystal structure have been deposited with the Cambridge Crystallographic Data Centre as supplementary publications no. 1576887–1576889. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: (+44)1223-336-033; e-mail: <u>deposit@ccdc.cam.ac.uk</u>, http://www.ccdc.cam.ac.uk).

References

- (1) Agilent Technologies. *CrysAlisPro*, Version 1.171.37.35. Yarnton, Oxfordshire, United Kindom: 2014.
- (2) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339-341.
- (3) Sheldrick, G. M. Acta Cryst. 2015, C71, 3-8.
- (4) Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122.
- (5) Brandenburg, K. Diamond, Crystal Impact GbR, Bonn, Germany, 1997

Crystal data ^[a]	13	(1' <i>S</i> ,3 <i>R</i> ,4 <i>R</i> ,5 <i>S</i>)- 20	(1' <i>S</i> ,3 <i>S</i> ,4 <i>S</i> ,5 <i>R</i>)- 20
Formula	C17H19NO5	C ₁₄ H ₁₇ NO ₄	$C_{14}H_{17}NO_4$
MW (g mol ⁻¹)	317.33	263.28	263.28
Space group	$P2_1$	$P2_{1}2_{1}2_{1}$	$P2_{1}2_{1}2_{1}$
Temp. (K)	292	100	100
<i>a</i> (Å)	9.66134(17)	6.32903(9)	6.38939(11)
<i>b</i> (Å)	5.45597(10)	8.54815(13)	7.59037(13)
<i>c</i> (Å)	14.8724(2)	23.7167(4)	26.8562(5)
α (°)	90.0	90.0	90.0
β (°)	93.7727(16)	90.0	90.0
γ (°)	90.0	90.0	90.0
$V(\text{\AA}^3)$	1797.12(8)	1283.11(3)	1302.47(4)
Ζ	2	4	4
$\mu (\mathrm{mm}^{-1})$	0.827	0.829	0.817
ρ_{calcd} (g cm ⁻³)	1.347	1.363	1.343
<i>R</i> ^[b, c]	0.0332	0.0297	0.0304
$R_w^{[d, e]}$	0.0904	0.0743	0.0785
GOF	1.049	1.025	1.070
CCDC	1576888	1576887	1576889

Table 1. Selected crystallographic data for compounds **13**, $(1^{\circ}S, 3R, 4R, 5S)$ -**20** and $(1^{\circ}S, 3S, 4S, 5R)$ -**20**.

[a] $\lambda_{MoK\alpha} = 0.71073$ Å. [b] $F_o > 4\sigma(F_o)$. [c] $R = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$. [d] all data.

[e] $R_w = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2]^{\frac{1}{2}}$.

Figure S1. Perspective view of the molecular structure of compound **13**. Ellipsoids are drawn at the 30% probability level.

Figure S2. Perspective view of the molecular structure of compound $(1^{\circ}S, 3R, 4R, 5S)$ -20. Ellipsoids are drawn at the 50% probability level.

Figure S3. Perspective view of the molecular structure of compound $(1^{\circ}S, 3S, 4S, 5R)$ -20. Ellipsoids are drawn at the 50% probability level.

¹H and ¹³C NMR spectra of compound **11**

¹H and ¹³C NMR spectra of compound **12**

 1 H and 13 C NMR spectra of compound 7

¹H and ¹³C NMR spectra of compound **13**

¹H and ¹³C NMR spectra of compound (1'S)-**18**

¹H and ¹³C NMR spectra of compound (1'S)-**19**

¹H and ¹³C NMR spectra of compound $(1^{\circ}S, 5R)$ -14

¹H and ¹³C NMR spectra of compound (1'*S*,5*S*)-14

¹H and ¹³C NMR spectra of compound (1'S,5R)-21

¹H and ¹³C NMR spectra of compound (1'*S*,5*S*)-**21**

¹H and ¹³C NMR spectra of compound (1'*S*,3*R*,4*S*,5*S*)-**15**

¹H and ¹³C NMR spectra of compound $(1^{\circ}S, 3S, 4R, 5R)$ -15

¹H and ¹³C NMR spectra of compound (1'*S*,3*R*,4*R*,5*S*)-**20**

¹H and ¹³C NMR spectra of compound (1'*S*,3*S*,4*S*,5*R*)-**20**

¹H and ¹³C NMR spectra of compound (1'*S*,3*R*,4*R*,5*S*)-**22**

¹H and ¹³C NMR spectra of compound (1'*S*,3*S*,4*S*,5*R*)-**22**

¹H and ¹³C NMR spectra of compound (3R, 4R, 5S)-23

¹H and ¹³C NMR spectra of compound (-)-(3R,4R,5S)-**3** in (CD₃)₂CO