Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

SUPPORTING INFORMATION

Synthesis of spiro-4H-pyrazole-oxindoles and fused 1H-pyrazoles

via divergent, thermally induced tandem cyclization/migration of

alkyne-tethered diazo compounds

Cheng Zhang, Shanliang Dong, Yang Zheng, Ciwang He, Jiaolong Chen, Jingsen Zhen, Lihua Qiu^{*} and Xinfang Xu^{*}

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry,

Chemical Engineering and Materials Science, Soochow University, Suzhou 215123,

China

E-mail: xinfangxu@suda.edu.cn qiulihua@suda.edu.cn

Table of Contents

1. General Information	S2
2. General Procedures for the Preparation of Diazoamides 1 and 3	S2-S11
3. Thermally Induced Reaction for the Preparation of 2 and 4	S11-S21
4. Scale Up	S21
4. Procedure for the Preparation of Copper Complex 7	S22-S23
5. Mechanism Studies	S23-S25
6. NMR Spectra of 2a, 4a, 6, 7, and 8	S26-S51
7. Single Crystal X-Ray Diffraction of 2a, 4a, and 7	S52-S54

General Information

DMF (*N*,*N*-dimethylformamide) and other solvents were dried by standard methods over CaH₂. Flash column chromatography was performed using silica gel (300-400 mesh). Analytical thin-layer chromatography was performed using glass plates pre-coated with 200-300 mesh silica gel impregnated with a fluorescent indicator (254 nm). ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃/DMSO-*d*₆ on a 400 MHz spectrometer. Chemical shifts are reported in ppm with the solvent signals as reference, and coupling constants (*J*) are given in Hertz. The peak information is described as: s = singlet, br = broad, d = doublet, t = triplet, q = quartet, m = multiplet, comp = composite. High-resolution mass spectra (HRMS) were recorded on a commercial apparatus (CI+ Source).

General Procedure for the Preparation of Diazoamides 1a-1h, 1j and 3a-3j.

<u>Synthesis of S2</u>: To a solution of secondary amine (2.0 mmol), S1 (2.2 mmol) and 4-dimethylaminopyridine (DMAP, 24.5 mg, 0.2 mmol) in CH₂Cl₂ (10.0 mL), dicyclohexylcarbodiimide (DCC, 494.8 mg, 2.4 mmol) was added within 5 min at 0 °C. The reaction mixture was stirred overnight and the reaction temperature was slowly warmed to room temperature. After filtering through Celite and the filtrate was washed with saturated aqueous NaHCO₃ (10.0 mL) and brine (10.0 mL) in sequence, and dried over anhydrous Na₂SO₄. Then the solvent was evaporated under vacuum after filtration, the obtained product S2 was directly used for the next step without further purification.

Synthesis of 1: The above obtained S2 and *p*-ABSA (4-acetamidobenzenesulfonyl azide, 576.6 mg, 2.4 mmol) was dissolved in DCM (10.0 mL), and DBU

(1,8-Diazabicyclo[5.4.0]undec-7-ene, 456.7 mg, 3.0 mmol) in DCM (5.0 mL) was added slowly at 0 °C. The reaction mixture was stirred at 0°C for 0.5 h. Upon completion (monitored by TLC), the solvent was evaporated under vacuum after filtering through Celite, and the resulting residues was purified by column chromatography on silica gel (eluent: petroleum ether/EtOAc = 3:1) to give the pure diazoamides 1 (40% – 80% yields based on secondary amine).

Ph **2-Cyano-2-diazo-***N***-methyl-N-(2-(phenylethynyl)phenyl)acetam** ide (1a). 366.4 mg, 61% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.66 – 7.62 (m, 1H), 7.54 – 7.50 (comp, 2H), 7.48 – 7.41 (comp, 2H), 7.38 – 7.32 (comp, 4H), 3.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 159.9, 142.5, 133.3, 131.8, 130.0, 129.8, 129.1, 129.0, 128.6, 123.5, 122.4, 107.4, 95.5, 84.6, 38.4. HRMS (TOF MS CI⁺) calculated for C₁₈H₁₃N₄O⁺ [M+H]⁺: 301.1089, found 301.1084.

F 2-Cyano-2-diazo-*N*-(2-((4-fluorophenyl)ethynyl)phenyl)-*N*methylacetamide (1b). 439.2 mg, 69% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.64 – 7.56 (m, 1H), 7.52 – 7.39 (m, 4H), 7.35 – 7.28 (m, 1H), 7.08 – 7.00 (m, 2H), 3.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 162.8 (d, *J* = 250.8 Hz), 159.8, 142.3, 133.6 (d, *J* = 8.5 Hz), 133.0, 130.0, 129.6, 128.8, 123.1, 118.3 (d, *J* = 3.5 Hz), 115.8 (d, *J* = 22.2 Hz), 107.2, 94.2, 84.3 (d, *J* = 1.4 Hz), 38.2. HRMS (TOF MS CI⁺) calculated for C₁₈H₁₂FN₄O⁺ [M+H]⁺: 319.0995, found 319.0986.

2-Cyano-2-diazo-*N***-(2-((3-fluorophenyl)ethynyl)phenyl)**-*N***-methylacetamide** (1c). 496.6 mg, 78% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.56 (d, *J* = 7.5 Hz, 1H), 7.69 – 7.61 (m, 1H), 7.51 – 7.45 (comp, 2H), 7.38 – 7.27 (comp, 3H), 7.26 – 7.19 (m, 1H), 7.13 – 7.05 (m, 1H), 3.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 162.4 (d, *J* = 247.2 Hz), 159.9, 142.6, 133.4, 130.4, 130.2 (d, *J* = 8.6 Hz), 129.8, 129.0, 127.7 (d, *J* = 3.1 Hz), 124.1 (d, *J* = 9.5 Hz), 122.9, 118.4 (d, *J* = 23.0 Hz), 116.4 (d, *J* = 21.2 Hz), 107.3, 94.0 (d, *J* = 3.4 Hz), 85.4, 38.3. HRMS (TOF MS CI⁺) calculated for C₁₈H₁₂FN₄O⁺ [M+H]⁺: 319.0995, found 319.0998.

F 2-Cyano-2-diazo-*N*-(2-((2-fluorophenyl)ethynyl)phenyl)-*N*-met hylacetamide (1d). 362.9 mg, 57% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.70 – 7.64 (m, 1H), 7.52 – 7.43 (comp, 3H), 7.38 – 7.31 (comp, 2H), 7.17 – 7.08 (comp, 2H), 3.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 162.8 (d, *J* = 252.6 Hz), 159.6, 142.6, 133.6, 131.0, 130.9, 130.4, 129.9, 129.1, 124.3 (d, *J* = 3.7 Hz), 123.2, 115.8 (d, *J* = 20.7 Hz), 111.2 (d, *J* = 15.6 Hz), 107.5, 89.6 (d, *J* = 3.3 Hz), 88.7, 46.4. HRMS (TOF MS CI⁺) calculated for C₁₈H₁₂FN₄O⁺ [M+H]⁺: 319.0995, found 319.0998.

methylacetamide (1e). 488.8 mg, 73% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.65 – 7.58 (m, 1H), 7.49 – 7.40 (comp, 4H), 7.38 – 7.28 (comp, 3H), 3.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 159.9, 142.5, 135.1, 133.2, 132.9, 130.2, 129.7, 129.0, 128.9, 123.0, 120.8, 107.3, 94.2, 85.5, 38.3. HRMS (TOF MS CI⁺) calculated for C₁₈H₁₂ClN₄O⁺ [M+H]⁺: 335.06700, found 335.0698.

2-Cyano-2-diazo-*N***-(2-((4-methoxyphenyl)ethynyl)** phenyl)-*N*-methylacetamide (1f). 284.1 mg, 43% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.63 – 7.56 (m, 1H), 7.50 – 7.36 (comp, 4H), 7.34 – 7.27 (m, 1H), 6.92 – 6.85 (comp, 2H), 3.83 (s, 3H), 3.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 160.3, 160.0, 142.3, 133.4, 133.0, 129.8, 129.6, 129.0, 123.9, 114.5, 114.3, 107.5, 95.8, 83.6, 55.5, 38.4. HRMS (TOF MS CI⁺) calculated for C₁₉H₁₅N₄O₂⁺ [M+H]⁺: 331.1195, found 331.1198.

2-Cyano-2-diazo-*N***-(2-ethynylphenyl)***-N***-methylacetamide (1g)**. 242.1 mg, 54% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.61 – 7.57 (m, 1H), 7.46 – 7.42 (comp, 2H), 7.31 – 7.28 (m, 1H), 3.35 (s, 4H), 1.02 (t, *J* = 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 159.4, 142.9, 134.1, 130.5, 129.7, 128.9, 122.2, 107.1, 83.2, 78.8, 38.1. HRMS (TOF MS CI⁺) calculated for C₁₂H₉N₄O⁺ [M+H]⁺: 225.0776, found 225.0778.

Ph *N*-Benzyl-2-cyano-2-diazo-*N*-(2-(phenylethynyl)phenyl)acetami de (1h). 308.7 mg, 41% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.64 – 7.56 (m, 1H), 7.54 – 7.46 (comp, 2H), 7.45 – 7.35 (comp, 4H), 7.31 – 7.22 (comp, 6H), 7.02 – 6.95 (m, 1H), 5.02 (dd, *J* = 307.8, 14.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 160.0, 140.6, 136.0, 133.3, 131.8, 130.1, 129.8, 129.5, 129.5, 129.1, 128.6, 128.5, 128.0, 124.0, 122.4, 107.3, 95.6, 85.0, 54.2. HRMS (TOF MS CI⁺) calculated for C₂₄H₁₇N₄O⁺ [M+H]⁺: 377.1402, found 377.1398.

✓ 2-Cyano-*N*-(2-(cyclopropylethynyl)phenyl)-2-diazo-*N*-methylac etamide (1j). 354.1 mg, 67% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.45 – 7.38 (m, 1H), 7.36 – 7.27 (m, 2H), 7.23 – 7.17 (m, 1H), 3.26 (s, 3H), 1.46 – 1.34 (m, 1H), 0.94 – 0.82 (m, 2H), 0.81 – 0.68 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 159.5, 142.3, 133.1, 129.4, 128.9, 128.5, 123.8, 107.2, 100.0, 70.9, 37.9, 9.1, 8.8, 0.2. HRMS (TOF MS CI⁺) calculated for C₁₅H₁₃N₄O⁺ [M+H]⁺: 265.1089, found 265.1084.

Ph2-Diazo-N-methyl-N-(2-(phenylethynyl)phenyl)-2-(phenylsulfonyl)acetamide (3a). 407.2 mg, 49% yield. ¹H NMR (400 MHz, CDCl₃) (δ, ppm)8.08 – 7.98 (comp, 2H), 7.62 – 7.58 (m, 1H), 7.50 – 7.47 (m, 1H), 7.45 – 7.37 (comp,6H), 7.35 – 7.27 (comp, 4H), 3.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm)158.6, 143.0, 142.2, 133.6, 133.6, 131.9, 130.2, 129.6, 129.1, 128.9, 128.8, 128.5,

128.3, 123.2, 122.2, 96.2, 84.1, 37.5. HRMS (TOF MS CI^+) calculated for $C_{23}H_{18}N_3O_3S^+[M+H]^+$: 416.1063, found 416.1069.

^{Cl} *N*-(2-((4-chlorophenyl)ethynyl)phenyl)-2-diazo-*N*-methyl-2-

(methylsulfonyl)acetamide (3b). 395.6 mg, 51% yield. ¹H NMR (400 MHz, DMSO- d_6) (δ , ppm) 7.74 – 7.69 (m, 1H), 7.61 – 7.54 (comp, 4H), 7.53 – 7.46 (comp, 3H), 3.39 (s, 3H), 3.29 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) (δ , ppm) 158.5, 142.7, 134.1, 133.3, 133.1, 130.9, 129.5, 128.9, 128.8, 121.4, 120.5, 93.7, 85.4, 73.3(C(N₂)), 44.7, 37.15. HRMS (TOF MS CI⁺) calculated for C₁₈H₁₅ClN₃O₃S⁺ [M+H]⁺: 388.0523, found 388.0525.

CF₃ 2-Diazo-*N*-methyl-2-(methylsulfonyl)-*N*-(2-((4-(trifluorom ethyl)phenyl)ethynyl)phenyl)acetamide (3c). 539.4 mg, 64% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.99 – 7.70 (m, 1H), 7.67 – 7.59 (comp, 4H), 7.49 – 7.41 (comp, 2H), 7.39 – 7.32 (m, 1H), 3.39 (s, 3H), 3.33 (s, 3H).; ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 159.4, 143.1, 133.8, 132.2, 130.9, 130.2, 129.6, 128.6, 126.0, 125.5 (q, *J* = 3.7 Hz), 123.8 (q, *J* = 179.2, 93.2 Hz), 122.4, 94.4, 86.2, 45.4, 37.7. HRMS (TOF MS CI⁺) calculated for C₁₉H₁₅F₃N₃O₃S+ [M+H]⁺: 422.0786, found 422.0781.

OMe 2-Diazo-*N*-(2-((4-methoxyphenyl)ethynyl)phenyl)-*N*-meth

yl-2-(methylsulfonyl)acetamide (3d). 306.7 mg, 40% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.65 – 7.56 (m, 1H), 7.55 – 7.47 (comp, 2H), 7.45 – 7.38 (comp, 2H), 7.37 – 7.32 (m, 1H), 6.95 – 6.86 (comp, 2H), 3.81 (s, 3H), 3.41 (s, 3H), 3.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 160.1, 159.0, 142.2, 133.2, 132.9, 129.6, 129.3, 128.4, 123.1, 114.0, 113.9, 96.0, 82.9, 55.1, 44.9, 37.2. HRMS (TOF MS CI⁺) calculated for C₁₉H₁₈N₃O₄S⁺ [M+H]⁺: 384.1018, found 384.1013.

hylsulfonyl)acetamide (3e). 285.6 mg, 45% yield. ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.50 – 7.44 (m, 1H), 7.40 – 7.33 (comp, 2H), 7.32 – 7.26 (m, 1H), 3.39 (s, 3H), 3.31 (s, 3H), 1.54 – 1.41 (m, 1H), 0.97 – 0.81 (comp, 4H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 158.7, 142.5, 133.2, 129.1, 129.0, 128.2, 123.4, 100.7, 70.4, 44.9, 36.7, 8.7, 0.1. HRMS (TOF MS CI⁺) calculated for $C_{15}H_{16}N_3O_3S^+$ [M+H]⁺: 318.0912, found 318.0907.

Ph 2-Diazo-2-(methylsulfonyl)-N-phenyl-N-(3-phenylprop-2-yn-1-y
 I)acetamide (3f). 506.8 mg, 61% yield. ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 8.12 –
 8.04 (comp, 2H), 7.67 – 7.62 (m, 1H), 7.59 – 7.54 (comp, 2H), 7.49 – 7.45 (comp,

3H), 7.39 – 7.34 (comp, 2H), 7.32 – 7.25 (comp, 5H), 4.68 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 158.0, 142.2, 139.8, 133.9, 131.8, 130.4, 129.7, 129.0, 128.6, 128.4, 128.4, 128.3, 122.5, 85.1, 83.5, 40.2. HRMS (TOF MS CI⁺) calculated for C₂₃H₁₈N₃O₃S⁺ [M+H]⁺: 416.1069, found 416.1068.

Ph 2-Diazo-2-(methylsulfonyl)-*N***-phenyl-***N***-(3-phenylprop-2-yn-1-yl)acetamide** (**3g**). 450.0 mg, 58% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.54 – 7.41 (comp, 5H), 7.40 – 7.34 (comp, 2H), 7.33 – 7.26 (comp, 3H), 4.78 (s, 2H), 3.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 158.4, 139.5, 131.7, 130.3, 129.8, 128.6, 128.4, 128.3, 122.3, 85.0, 83.4, 45.3, 40.1. HRMS (TOF MS CI⁺) calculated for C₁₈H₁₆N₃O₃S⁺ [M+H]⁺: 354.0912, found 354.0902.

OMe 2-Diazo-*N*-(3-(4-methoxyphenyl)prop-2-yn-1-yl)-2-(methy Isulfonyl)-*N*-phenylacetamide (3h). 306.4 mg, 47% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.50 – 7.42 (comp, 5H), 7.32 – 7.26 (comp, 2H), 6.87 – 6.78 (comp, 2H), 4.76 (s, 2H), 3.80 (s, 3H), 3.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 159.8, 158.5, 139.7, 133.2, 130.3, 129.8, 128.6, 114.5, 114.0, 85.0, 82.0, 55.3, 45.4, 40.2.. HRMS (TOF MS CI⁺) calculated for C₁₉H₁₈N₃O₄S⁺ [M+H]⁺: 384.1018, found 384.1010.

Me *N*-(but-2-yn-1-yl)-2-diazo-2-(methylsulfonyl)-*N*-phenylacetami de (3i). 413.3 mg, 71% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.46 – 7.40 (comp, 3H), 7.35 (comp , 2H), 4.51 – 4.47 (m, 2H), 3.34 (s, 3H), 2.26 (t, *J* = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 158.4, 139.5, 130.3, 129.7, 128.1, 78.0, 73.2, 45.3, 39.4. HRMS (TOF MS CI⁺) calculated for C₁₃H₁₄N₃O₃S⁺ [M+H]⁺: 292.0756, found 292.0750.

2-Diazo-N-methyl-2-(methylsulfonyl)-N-(prop-2-yn-1-yl)aceta

mide (**3j**). 357.3 mg, 83% yield. ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 4.15 (s, 2H), 3.38 (s, 3H), 3.07 (s, 3H), 2.32 (t, J = 2.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 159.4, 76.8, 73.6, 45.4, 38.5, 35.2. HRMS (TOF MS CI⁺) calculated for C₇H₁₀N₃O₃S⁺ [M+H]⁺: 216.0443, found 216.0440.

Procedure for the Preparation of Diazoamide 3k.

<u>Synthesis of 3k</u> : To a 50-mL oven-dried flask with a magnetic stirring bar, *N*-methyl-2-(phenylethynyl)aniline (**S3**, 788.0 mg, 3.8 mmol) and DIPEA (*N*,*N*-Diisopropylethylamine, 0.66 mL, 3.8 mmol) were dissolved in dry DCM (20.0 mL), bromoacetyl bromide (0.34 mL, 3.8 mmol) was added slowly at 0 °C, then the mixture was stirred at room temperature for 12 h. After the reaction was completed, the reaction was quenched by saturated brine (30.0 mL), and the reaction mixture was

extracted with DCM (20.0 mL \times 3). The combined organic phase was dried with anhydrous Na₂SO₄. Then the solvent was evaporated under vacuum, and the obtained product **S4** was directly used for the next step without further purification.

To a 50-mL oven-dried flask with a magnetic stirring bar, the above obtained **S4** and *N,N'*-ditosylhydrazine (3.2 g, 9.5 mmol) were dissolved in THF (20.0 mL), DBU (1,8-Diazabicyclo[5.4.0]undec-7-ene, 2.7 mL, 18.0 mmol) was added slowly over 5 min at 0 °C, and the reaction mixture was stirred for 60 minutes until no more gas was generated from the reaction mixture. The reaction was quenched by saturated NaHCO₃ solution (30.0 mL), and the reaction mixture was extracted with ethyl acetate (20.0 mL × 3), The combined organic phase was dried with anhydrous Na₂SO₄. The crude product was purified by column chromatography (silica gel, petroleum ether : ethyl acetate = 10:1 to 2:1) to give the 2-Diazo-*N*-methyl-*N*-(2-(phenylethynyl) phenyl)acetamide **3k**. 554.5 mg, 53% yield (based on **S3**). ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.62 – 7.58 (m, 1H), 7.53 – 7.48 (comp, 2H), 7.39 – 7.32 (comp, 5H), 7.25 – 7.22 (m, 1H), 4.41 (s, 1H), 3.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 166.0, 144.1, 133.2, 131.8, 129.7, 128.9, 128.7, 128.5, 128.4, 123.0, 122.5, 95.2, 85.0, 47.4, 36.3. HRMS (TOF MS CI⁺) calculated for C₁₇H₁₄N₃O⁺ [M+H]⁺: 276.1137, found 276.1133.

Thermally Induced Reaction for the Preparation of 2 and 4:

To a 10-mL oven-dried vial with a magnetic stirring bar, diazo compound **1** or **3** (0.2 mmol) was dissolved in *N*, *N*-dimethylformamide (DMF, 2.0 mL). After the reaction mixture stirred at 80 °C overnight, the reaction was quenched with water (10 mL) and extracted with CH_2Cl_2 (5.0 mL × 3). The combined organic phase was washed with saturated brine (10 mL), and dried over anhydrous sodium sulfate. Then the solvent was removed under vacuo to give a white solid. The solid product was further purified by recrystallization (solvents: petroleum ether/ethyl acetate / $CH_2Cl_2 = 1$: 2: 5,) to give the pure products **2** or **4** in high yields (**2i** was purified by column chromatography;

and the yields of 4g and 4j were given without recrystallization).

NC^C N^{-N} **1-Methyl-2-oxo-5'-phenylspiro[indoline-3,4'-pyrazole]-3'-carboni trile (2a)**. White solid; m.p. 221.0 – 224.0 °C. 52.9 mg, 88% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.57 – 7.53 (comp, 3H), 7.48 – 7.45 (m, 1H), 7.35 – 7.31 (comp, 2H), 7.16 – 7.11 (comp, 2H), 6.87 (d, *J* = 7.5 Hz, 1H), 3.43 (s, 3H); ¹³C NMR (100MHz, CDCl₃) (δ , ppm) 173.1, 164.4, 150.3, 144.3, 133.5, 131.9, 129.5, 128.7, 127.3, 125.0, 124.5, 119.2, 110.7, 110.1, 28.1. HRMS (TOF MS CI⁺) calculated for C₂₄H₁₇N₂O₂⁺ [M+H]⁺: 301.1089, found 301.1084.

NC N^{-N} **5'-(4-Fluorophenyl)-1-methyl-2-oxospiro[indoline-3,4'-pyraz ole]-3'-carbonitrile (2b)**. White solid; m.p. 218.0 – 221.0 °C. 57.3 mg, 90% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.61 – 7.52 (comp, 3H), 7.19 – 7.12 (comp, 2H), 7.07 – 6.99 (comp, 2H), 6.91 – 6.86 (m, 1H), 3.43 (s, 3H); ¹³C NMR (150MHz, CDCl₃) (δ , ppm) 172.0, 165.9 (d, *J* = 257.2 Hz), 164.3, 150.2, 144.3, 132.1, 131.1 (d, *J* = 9.2 Hz), 125.1, 124.6, 123.8 (d, *J* = 3.1 Hz), 119.1, 117.0 (d, *J* = 22.3 Hz), 110.7, 110.1, 28.2. ¹⁹F NMR (376 MHz, CDCl₃) (δ , ppm) -103.2. HRMS (TOF MS CI⁺) calculated for C₁₈H₁₂FN₄O⁺ [M+H]⁺: 319.0995, found 319.0986.

 NC*
 N-N
 5'-(3-Fluorophenyl)-1-methyl-2-oxospiro[indoline-3,4'-pyraz

 ole]-3'-carbonitrile (2c). White solid; m.p. 223.0 – 226.0 °C. 56.7 mg, 89% yield. ¹H

NMR (400 MHz, CDCl₃) (δ , ppm) 7.56 (t, J = 7.8 Hz, 1H), 7.35 – 7.28 (comp, 2H), 7.25 – 7.14 (comp, 4H), 6.88 (d, J = 7.6 Hz, 1H), 3.43 (s, 3H); ¹³C NMR (150MHz, CDCl₃) (δ , ppm) 172.0 (d, J = 2.8 Hz), 164.0, 162.9 (d, J = 248.9 Hz), 150.7, 144.3, 132.2, 131.3 (d, J = 8.1 Hz), 129.2 (d, J = 8.1 Hz), 125.1, 124.5, 124.4 (d, J = 2.8 Hz), 120.6 (d, J = 21.4 Hz), 118.7, 115.4 (d, J = 23.7 Hz), 110.8, 109.9, 28.2. ¹⁹F NMR (376 MHz, CDCl₃) (δ , ppm) -110.1. HRMS (TOF MS CI⁺) calculated for C₁₈H₁₂FN₄O⁺ [M+H]⁺: 319.0995, found 319.0998.

NC N^{-N} **5'-(2-Fluorophenyl)-1-methyl-2-oxospiro[indoline-3,4'-pyraz ole]-3'-carbonitrile (2d)**. White solid; m.p. 185.0 – 189.0 °C. 57.9 mg, 91% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.39 – 8.28 (m, 1H), 7.57 – 7.44 (comp, 2H), 7.31 – 7.22 (m, 1H), 7.11 – 7.03 (comp, 2H), 7.01 – 6.93 (m, 1H), 6.76 (d, *J* = 7.6 Hz, 1H), 3.40 (s, 3H); ¹³C NMR (100MHz, CDCl₃) (δ , ppm) 170.1 (d, *J* = 4.1 Hz), 164.0 (d, *J* = 2.7 Hz), 161.2 (d, *J* = 256.0 Hz), 150.8, 145.6, 135.5 (d, *J* = 9.3 Hz), 131.6, 131.2 (d, *J* = 2.4 Hz), 125.4 (d, *J* = 3.2 Hz), 124.1 (d, *J* = 68.4 Hz), 117.2 (d, *J* = 1.8 Hz), 116.8 (d, *J* = 22.5 Hz), 115.7 (d, *J* = 12.2 Hz), 110.1, 109.9, 53.6, 28.0. ¹⁹F NMR (376 MHz, CDCl₃) (δ , ppm) -111.4. HRMS (TOF MS CI⁺) calculated for C₁₈H₁₂FN₄O⁺ [M+H]⁺: 319.0995, found 319.0998.

 NC
 N^{-N}
 3'-(4-Chlorophenyl)-1-methyl-2-oxospiro[indoline-3,4'-pyra

 zole]-5'-carbonitrile (2e).
 White solid; m.p. 159.0 – 162.0 °C. 58.2 mg, 87% yield.

 ¹H NMR (400 MHz, DMSO-d₆) (δ, ppm) 7.66 – 7.59 (m, 1H), 7.59 – 7.43 (comp, 5H),

 7.27 – 7.13 (comp, 2H), 3.42 (s, 3H); ¹³C NMR (100MHz, DMSO-d₆) (δ, ppm) 172.0,

 163.5, 150.1, 144.1, 138.8, 132.1, 130.2, 129.9, 125.3, 125.0, 124.8, 118.0, 111.8,

110.2, 77.0, 28.2. HRMS (TOF MS CI^+) calculated for $C_{18}H_{12}CIN_4O^+$ [M+H]⁺: 335.0700, found 335.0698.

^{NC} N^{-N} **3'-(4-Chlorophenyl)-1-methyl-2-oxospiro[indoline-3,4'-py razole]-5'-carbonitrile (2f)**. White solid; m.p. 268.0 – 271.0 °C. 56.2 mg, 85% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.56 – 7.47 (comp, 3H), 7.16 – 7.10 (comp, 2H), 6.90 – 6.79 (comp, 3H), 3.80 (s, 3H), 3.43 (s, 3H); ¹³C NMR (100MHz, CDCl₃) (δ , ppm) 172.6, 164.9, 164.0, 149.1, 144.3, 131.8, 130.9, 124.9, 124.6, 120.1, 120.0, 115.0, 110.5, 110.4, 55.7, 28.1. HRMS (TOF MS CI⁺) calculated for C₁₉H₁₅N₄O₂⁺ [M+H]⁺: 331.1195, found 331.1190.

NC N^{-N} **1-Methyl-2-oxospiro[indoline-3,4'-pyrazole]-3'-carbonitrile** (**2g**). White solid; m.p. 234.0 – 237.0 °C. 42.6 mg, 95% yield. ¹H NMR (400 MHz, DMSO-*d*₆) (δ , ppm) 7.92 (d, *J* = 7.6 Hz, 1H), 7.83 – 7.72 (m, 1H), 7.57 (d, *J* = 8.5 Hz, 1H), 7.38 – 7.30 (m, 1H), 6.85 (s, 1H), 3.59 (s, 3H); ¹³C NMR (100MHz, DMSO-*d*₆) (δ , ppm) 158.7, 147.6, 139.6, 134.1, 124.8, 122.7, 116.0, 115.4, 115.1, 92.7, 38.9, 29.7. HRMS (TOF MS CI⁺) calculated for C₁₂H₉N₄O⁺ [M+H]⁺: 225.0776, found 225.0787.

^{NC} N^{-N} **1-Benzyl-2-oxo-5'-phenylspiro[indoline-3,4'-pyrazole]-3'-carbonit rile (2h)**. White solid; m.p. 196.0 – 199.0 °C. 49.6 mg, 66% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.52 – 7.48 (comp, 2H), 7.47 – 7.40 (comp, 2H), 7.40 – 7.34 (comp, 5H), 7.26 – 7.20 (comp, 2H), 7.11 – 7.06 (comp, 2H), 6.87 (d, J = 7.5 Hz, 1H), 5.06 (dd, J = 87.9, 15.3 Hz, 2H); ¹³C NMR (100MHz, CDCl₃) (δ , ppm) 173.2, 164.6, 150.3, 143.5, 134.3, 133.5, 131.8, 129.4, 129.3, 128.9, 128.7, 128.0, 127.2, 124.9, 124.6, 119.4, 111.7, 110.3, 45.6. HRMS (TOF MS CI⁺) calculated for C₂₄H₁₇N₄O⁺ [M+H]⁺: 337.1402, found 337.1390.

<u>Synthesis of 2i</u>: To a solution of *N*-methyl-2-(phenylethynyl)aniline (**S3**, 83.0 mg, 0.4 mmol), 2-oxopropanoic acid (43.0 mg, 0.48 mmol) and 4-dimethylaminopyridine (DMAP, 5.0 mg, 0.04 mmol) in CH₂Cl₂ (4.0 mL), dicyclohexylcarbodiimide (DCC, 98.0 mg, 0.48 mmol) was added within 5 min at 0 $^{\circ}$ C under argon atmosphere. The reaction mixture was stirred overnight and the reaction temperature was slowly warmed to room temperature. After filtering through Celite and the filtrate was washed with saturated aqueous NaHCO₃ (10.0 mL) and brine (10.0 mL) in sequence, and dried over anhydrous Na₂SO₄. The solvent was evaporated under vacuum after filtration, and the obtained product **S5** was directly used for the next step without further purification.

To a solution of above obtained **S5** in CHCl₃ (5.0 mL) was added TsNHNH₂ (111.8 mg, 0.6 mmol) and TsOHH₂O (3.8 mg, 0.02 mmol). The reaction mixture was refluxed for 5 h. After cooling to room temperature, the solvent was evaporated under reduced pressure and the resulting crude product **S6** was dissolved in DCM (30 mL). Then DBU (92.0 mg, 0.6 mmol) was added and the reaction mixture was stirred at room temperature for 2 h. After consumption of the material **S6**, the reaction mixture was washed with saturated aqueous ammonium chloride (10.0 mL), saturated aqueous sodium bicarbonate (10.0 mL), and brines (10.0 mL) in sequence. The organic layer was dried with anhydrous Na₂SO₄, and the solvent was removed under reduced

pressure after filtration. The crude reaction mixture was purified by flash column chromatography on silica gel (EtOAc/petroleum ether = 1:5) to afford 1,3'-Dimethyl-5'-phenylspiro [indoline-3,4'-pyrazol]-2-one (**2i**). White solid; m.p. 208.0 – 211.0 °C. 55.5 mg, 48% yield (based on **S3**). ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.49 – 7.41 (comp, 3H), 7.38 – 7.32 (m, 1H), 7.27 – 7.25 (comp, 2H), 7.10 – 7.05 (comp, 2H), 6.85 (d, *J* = 7.2 Hz, 1H), 3.40 (s, 3H), 2.00 (s, 3H); ¹³C NMR (150MHz, CDCl₃) (δ , ppm) 172.7, 171.5, 168.1, 144.2, 131.5, 130.5, 129.2, 129.1, 127.5, 124.4, 124.0, 123.2, 109.8, 27.6, 12.6. HRMS (TOF MS CI⁺) calculated for C₁₈H₁₆N₃O⁺ [M+H]⁺: 290.1293, found 290.1297.

4-(Cyclopropylidenemethyl)-1-methyl-2-oxo-1,2-dihydroquinol ine-3-carbonitrile (2j). White solid; m.p. 184.0 – 187.0 °C. 40.2 mg, 85% yield. ¹H NMR (400 MHz, DMSO-*d*₆) (δ , ppm) 8.13 (d, *J* = 8.2 Hz, 1H), 7.84 – 7.77 (m, 1H), 7.63 (d, *J* = 8.6 Hz, 1H), 7.42 – 7.34 (m, 1H), 6.92 (s, 1H), 3.64 (s, 3H), 3.26 – 3.17 (m, 2H), 2.76 – 2.68 (m, 2H); ¹³C NMR (100MHz, DMSO-*d*₆) (δ , ppm) 158.3, 150.4, 144.7, 140.5, 139.6, 134.1, 128.0, 123.1, 117.1, 115.9, 115.9, 102.1, 40.15, 33.4, 30.0, 28.5. HRMS (TOF MS CI⁺) calculated for C₁₅H₁₃N₂O⁺ [M+H]⁺: 237.1028, found 237.1033.

5-Methyl-1-phenyl-3-(phenylsulfonyl)-3*H*-pyrazolo[3,4-*c*]qui

nolin-4(5*H***)-one (4a)**. White solid; m.p. 254.0 – 257.0 °C. 74.8 mg, 90% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.39 – 8.31 (comp, 2H), 7.77 – 7.73 (m, 1H), 7.69 – 7.62 (comp, 3H), 7.60 – 7.53 (comp, 5H), 7.50 – 7.45 (m, 1H), 7.39 (d, *J* = 8.4 Hz,

1H), 7.08 (t, J = 7.5 Hz, 1H), 3.77 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) (δ , ppm) 152.7, 150.1, 138.1, 134.5, 132.2, 131.7, 129.9, 129.8, 129.6, 129.3, 129.2, 129.0, 124.4, 124.3, 122.8, 115.4, 115.3, 30.2. HRMS (TOF MS CI⁺) calculated for C₂₃H₁₈N₃O₃S⁺ [M+H]⁺: 416.1063, found 416.1069.

1-(4-Chlorophenyl)-5-methyl-3-(methylsulfonyl)-3H-pyraz

olo[3,4-*c*]quinolin-4(5*H*)-one (4b). White solid; m.p. 293.0 – 296.0 °C. 71.2 mg, 92% yield. ¹H NMR (400 MHz, DMSO-*d*₆) (δ , ppm) 7.75 – 7.69 (comp, 5H), 7.65 – 7.60 (comp, 2H), 7.28 – 7.24 (m, 1H), 4.05 (s, 3H), 3.79 (s, 3H); ¹³C NMR (150 MHz, DMSO-*d*₆) (δ , ppm) 152.2, 147.2, 137.5, 134.6, 131.4, 130.9, 130.7, 129.5, 129.1, 123.2, 123.0, 116.4, 114.4, 42.5, 29.9. HRMS (TOF MS CI⁺) calculated for C₁₈H₁₅ClN₃O₃S⁺ [M+H]⁺: 388.0523, found 388.0535.

5-Methyl-3-(methylsulfonyl)-1-(4-(trifluoromethyl)phenyl

)-3*H***-pyrazolo[3,4-***c***]quinolin-4(5***H***)-one (4c). White solid; m.p. 296.0 – 299.0 °C. 76.7 mg, 91% yield. ¹H NMR (400 MHz, DMSO-***d***₆) (δ, ppm) 8.02 – 7.94 (comp, 4H), 7.74 – 7.71 (m, 1H), 7.65 – 7.61 (comp, 2H), 7.31 – 7.24 (m, 1H), 4.07 (s, 3H), 3.80 (s, 3H); ¹³C NMR (150 MHz, DMSO-***d***₆) (δ, ppm) 152.2, 146.9, 137.6, 136.8, 136.1, 131.1, 130.5, 130.1, 129.6, 126.0 (q,** *J* **= 7.2 Hz), 123.2 (q,** *J* **= 8.4 Hz), 122.3 (q,** *J* **= 583.6 Hz), 116.4, 114.3, 42.5, 30.0. ¹⁹F NMR (376 MHz, DMSO-***d***₆) (δ, ppm) -61.1.** HRMS (TOF MS CI^+) calculated for $C_{19}H_{15}F_3N_3O_3S^+$ [M+H]⁺: 422.0786, found 422.0780.

1-(4-Methoxyphenyl)-5-methyl-3-(methylsulfonyl)-3H-py

razolo[**3**,**4**-*c*]**quinolin**-**4**(**5***H*)-**one** (**4d**). White solid; m.p. 256.0 – 259.0 °C. 68.2 mg, 89% yield. ¹H NMR (400 MHz, DMSO-*d*₆) (δ, ppm) 7.77 – 7.67 (comp, 2H), 7.66 – 7.53 (comp, 3H), 7.28 – 7.21 (m, 1H), 7.21 – 7.09 (comp, 2H), 4.04 (s, 3H), 3.88 (s, 3H), 3.78 (s, 3H); ¹³C NMR (150 MHz, DMSO-*d*₆) (δ, ppm) 160.2, 152.3, 148.2, 137.5, 130.8, 130.6, 129.4, 123.8, 123.2, 123.1, 122.9, 116.3, 114.7, 114.4, 55.3, 42.5, 29.9. HRMS (TOF MS CI⁺) calculated for $C_{19}H_{18}N_3O_4S^+$ [M+H]⁺: 384.1018, found 384.1010.

1-Cyclopropyl-5-methyl-3-(methylsulfonyl)-3*H*-pyrazolo[3,4 -*c*]quinolin-4(5*H*)-one (4e). White solid; m.p. 248.0 – 251.0 °C. 59.0 mg, 93% yield. ¹H NMR (400 MHz, DMSO-*d*₆) (δ , ppm) 8.32 – 8.24 (m, 1H), 7.59 – 7.52 (m, 1H), 7.52 – 7.45 (m, 1H), 7.38 – 7.31 (m, 1H), 3.67 (s, 3H), 2.48 (s, 3H), 2.35 – 2.27 (m, 1H), 1.12 – 0.99 (m, 2H), 0.94 – 0.82 (m, 2H); ¹³C NMR (150 MHz, DMSO-*d*₆) (δ , ppm) 154.5, 146.4, 136.6, 133.4, 127.1, 123.6, 122.7, 118.1, 117.2, 115.7, 34.5, 29.1, 8.7, 6.7. HRMS (TOF MS CI⁺) calculated for C₁₅H₁₆N₃O₃S⁺ [M+H]⁺: 318.0912, found 318.0910.

^{Ph} **3,5-Diphenyl-1-(phenylsulfonyl)-4,5-dihydropyrrolo[3,4-***c*]**pyr azol-6(1***H***)-one (4f**). White solid; m.p. 235.0 – 238.0 °C. 78.1 mg, 94% yield. ¹H NMR (400 MHz, DMSO-*d*₆) (δ , ppm) 8.23 – 8.12 (comp, 2H), 7.93 – 7.76 (comp, 5H), 7.75 – 7.66 (comp, 2H), 7.61 – 7.40 (comp, 5H), 7.23 (t, *J* = 7.4 Hz, 1H), 5.19 (s, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) (δ , ppm) 154.7, 147.9, 142.7, 139.5, 136.4, 135.6, 132.7, 130.2, 130.1, 129.5, 129.3, 129.0, 127.9, 126.6, 124.9, 119.9, 45.5. HRMS (TOF MS CI⁺) calculated for C₂₃H₁₈N₃O₃S⁺ [M+H]⁺: 416.1069, found 416.1063.

1-(Methylsulfonyl)-3,5-diphenyl-4,5-dihydropyrrolo[3,4-c]pyr

azol-6(1*H***)-one (4g)**. White solid; m.p. 256.0 – 259.0 °C. 67.9 mg, >95% yield (without recrystallization). ¹H NMR (400 MHz, DMSO-*d*₆) (δ , ppm) 7.92 – 7.84 (comp, 3H), 7.69 – 7.30 (comp, 6H), 7.29 – 7.18 (m, 1H), 5.26 (s, 2H), 3.81 (s, 3H); ¹³C NMR (100MHz, DMSO-*d*₆) (δ , ppm) 155.2, 146.6, 142.4, 139.5, 131.3, 129.9, 129.8, 129.2, 129.0, 126.5, 124.9, 119.9, 45.7, 41.8. HRMS (TOF MS CI⁺) calculated for C₁₈H₁₆N₃O₃S⁺ [M+H]⁺: 354.0912, found 354.0907.

OMe 3-(4-Methoxyphenyl)-1-(methylsulfonyl)-5-phenyl-4,5-dihydr opyrrolo[3,4-c]pyrazol-6(1*H*)-one (4h). White solid; m.p. 245.0 – 248.0 °C. 72.1 mg, 94% yield. ¹H NMR (400 MHz, DMSO- d_6) (δ , ppm) 7.88 – 7.80 (comp, 4H), 7.50 – 7.44 (comp, 2H), 7.23 (t, J = 7.4 Hz, 1H), 7.13 – 7.08 (comp, 2H), 5.22 (s, 2H), 3.84 (s, 3H), 3.78 (s, 3H); ¹³C NMR (150MHz, DMSO- d_6) (δ , ppm) 160.5, 155.2, 146.7, 142.3, 139.5, 131.0, 129.0, 128.1, 124.8, 122.3, 119.9, 114.6, 55.4, 45.7, 41.8. HRMS (TOF MS CI⁺) calculated for C₁₉H₁₈N₃O₄S⁺ [M+H]⁺: 384.1018, found 384.1013.

c]pyrazol-6(1*H*)-one (4i). White solid; m.p. 214.0 – 217.0 °C. 51.3 mg, 88% yield. ¹H NMR (400 MHz, DMSO-*d*₆) (δ , ppm) 7.81 – 7.78 (comp, 2H), 7.42 – 7.38 (comp, 2H), 7.16 – 7.11 (m, 1H), 4.76 (s, 2H), 2.47 (s, 3H), 2.33 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) (δ , ppm) 161.7, 149.4, 140.4, 133.6, 128.9, 124.0, 121.3, 119.3, 45.0, 39.7, 10.0. HRMS (TOF MS CI⁺) calculated for C₁₃H₁₄N₃O₃S⁺ [M+H]⁺: 292.0756, found 292.0755.

5-Methyl-1-(methylsulfonyl)-4,5-dihydropyrrolo[3,4-*c*]

pyrazol-6(1*H***)-one (4j)**. White gum, 41.8 mg, >95% yield (without recrystallization). ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.67 (s, 1H), 4.24 (s, 2H), 3.52 (s, 3H), 3.12 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 157.0, 142.1, 136.0, 133.6, 46.2, 42.1, 30.7. HRMS (TOF MS CI⁺) calculated for C₇H₁₀N₃O₃S⁺ [M+H]⁺: 216.0443, found 216.0444.

Ph^{\sim} N **5-Methyl-1-phenyl-3***H***-pyrazolo[3,4-***c***]quinolin-4(5***H***)-one (4k). White solid; m.p. 287.0 – 291.0 °C. 45.7 mg, 83% yield. ¹H NMR (400 MHz, DMSO-***d***₆) (\delta, ppm) 14.47 (s, 1H), 7.82 – 7.71 (m, 1H), 7.70 – 7.63 (comp, 2H), 7.63 – 7.50 (comp, 4H), 7.49 – 7.40 (m, 1H), 7.23 – 7.04 (m, 1H), 3.72 (s, 3H); ¹³C NMR (150 MHz, DMSO-***d***₆) (\delta, ppm) 153.6, 147.0, 136.7, 134.0, 131.8, 129.3, 128.7, 128.6, 127.6, 122.5, 122.4, 117.0, 116.4, 116.2, 29.2. HRMS (TOF MS CI+) calculated for C₁₇H₁₄N₃O⁺ [M+H]⁺: 276.1137, found 276.1130.**

Scale Up:

To a 100-mL oven-dried round-bottom flask with a magnetic stirring bar, diazo compound **1a** (4.0 mmol, 1.2 g) was dissolved in *N*,*N*-dimethylformamide (DMF, 40.0 mL). After stirring overnight at 80 °C, the reaction was quenched with water (100 mL) and the aqueous phase extracted with CH_2Cl_2 (50.0 mL × 3). The combined organic phase was washed with saturated brine (100 mL × 2), and the organic phase was dried over anhydrous Na₂SO₄. Then the solvent was removed in vacuo after filtration to give a white solid. The solid product was further purified by recrystallization (solvents: petroleum ether/ethyl acetate /CH₂Cl₂ = 1: 2: 5,) to give 0.972 g pure product **2a** in 81% yield.

Procedure for the Preparation of Copper Complex 7.

To a 100-mL oven-dried flask containing a magnetic stirring bar, was added 5 (10.0 mmol, 2.51 g), sulfonyl hydrazide (11 mmol, 2.05 g) and methanol (20.0 mL) in sequence, and the reaction mixture was stirred at $60\sim65$ °C for 12 h. Then the solvent was evaporated under vacuum, and the crude product was directly used for the next step without further purification.

To a 100-mL oven-dried flask containing a magnetic stirring bar, the above obtained product, K₂CO₃ (20 mmol, 2.0 equiv, 2.76 g), and 1,4-dioxane (20 mL) were added in sequence under atmosphere of argon, and the reaction mixture was stirred at 90 °C for 10 h. After the reaction was completed (monitored by TLC), the reaction mixture was quenched with saturated brine (20 mL) and extracted with EtOAc (3×20 mL). The combined organic phase was dried over Na₂SO₄, and the solvent was evaporated under vacuum after filtration. The crude reaction mixture was purified by flash column chromatography on silica gel (Hexanes:EtOAc = 5:1 to 2:1) to give pure **6** as a yellow solid (1.88 g, 71.6% yield). mp: 159-160 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.45 (d, *J* = 4.8 Hz, 1H), 8.27 (d, *J* = 8.0 Hz, 1H), 7.74-7.70 (m, 1H), 7.24-7.17 (m, 2H), 6.98 (d, *J* = 8.1 Hz, 1H), 6.74 (t, *J* = 7.5 Hz, 1H), 6.60 – 6.49 (m, 1H), 5.39 (d, *J* = 9.0 Hz, 1H), 4.64 (d, *J* = 9.0 Hz, 1H), 2.17 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 179.3, 175.1, 161.7, 149.6, 149.2, 136.6, 130.1, 125.0, 124.9, 123.1, 122.7, 121.1, 110.7, 74.2, 73.5, 12.6. HRMS (TOF MS ESI⁺) calculated for C₁₆H₁₄N₃O⁺ [M+H]⁺: 264.1137, found 264.1346.

To a 25-mL oven-dried vial containing a magnetic stirring bar, Cu(PPh₃)₃Br (93.0 mg, 0.1 mmol) was dissolved in 5 mL of chloroform at room temperature. **5** (26.3 mg, 0.1 mmol) was then added to reaction mixture. The colorless solution immediately turned orange. The contents of the flask were allowed to stir at room temperature for 25 min and the solvent was removed in vacuo. The resulting orange solid was dissolved in 4 mL of DCM and layered with 8 mL of ether. The precipitate was collected and recrystallized with DCM, ether and hexane to give **6** as an orange solid (83.8 mg, 90% yield). ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.44 (d, *J* = 4.8 Hz, 1H), 8.01 (bs, 1H), 7.76 (bs, 1H), 7.35-7.19 (comp, 33H), 7.00 (d, *J* = 8.1 Hz, 1H), 6.75 (td, *J* = 7.5, 1.0 Hz, 1H), 6.46 (bs, 1H), 4.62 (d, *J* = 9.0 Hz, 1H), 2.18 (s, 3H).

Mechanism Studies

To a dry NMR tube, diazo compound **1h** (0.05 mmol, 18.8 mg) was dissolved in $CDCl_3$ (0.5 mL). After warming to 60 °C in a oil bath for 12 h, the most of the staring material **1h** transferred into the desired pyrazole **2h** and there was no obvious other signal (Fig. S1, the middle spectrum). After another 12 h at 80 °C, all the material transferred to product **2h** (Fig. S1, the bottom spectrum).

Comments: no proton NMR signal of corresponding 3H-pyrazole intermediate was observed.

Fig. S1 Proton NMR observation of reaction with 1h.

To a dry NMR tube, diazo compound 3j (0.05 mmol, 10.8 mg) was dissolved in CDCl₃ (0.5 mL). After warming to 40 °C in a oil bath for 6 h, all the material is consumed, and the desired pyrazole 4j was formed as the major product combined with other product, which most probably account for the proton signals of 3H-pyrazole 8 (Fig. S2, the middle spectrum). After another 12 h at 60 °C, compound 8 transferred to product 4j (Fig. S2, the bottom spectrum).

Comments: Proton signals, which most probably account for the corresponding 3H-pyrazole intermediate 8 was observed.

Me-N, N O SO₂Me 5-Methyl-6a-(methylsulfonyl)-4,6a-dihydropyrrolo[3,4-*c*]pyrazol-

6(5*H***)-one (8).** ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 6.30 (s, 1H), 4.11 (s, 2H), 3.15 (s, 3H), 2.97 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 165.5, 152.6, 119.7, 51.8, 49.5, 42.6, 29.1.

Fig. S2 Proton NMR observation of 3*H*-pyrazole intermediate 8.

0ct24-2017-f400-zc-f

90 80 f1 (ppm)

X-ray crystal structure of 2a

Datablock: I

Bond precision:	C-C = 0.0033 A	Wavelengt	ch=0.71073	
Cell:	a=19.3723(14) alpha=90	b=8.7871(5) beta=109.410(8)	c=19.4970(14) gamma=90	
Temperature:	295 K			
	Calculated	Reported	E	
Volume	3130.3(4)	3130.3(4	1)	
Space group	C_2/c	C = 1 - 2/c	1	
Hall group	-C 2vc	-C 2VC		
Moietv formula	C18 H12 N4 O	C18 H12	N4 O	
Sum formula	C18 H12 N4 O	C18 H12	N4 O	
Mr	300.32	300.32		
Dx,q cm-3	1.275	1.274		
Z	8	8		
Mu (mm-1)	0.083	0.083		
F000	1248.0	1248.0		
F000′	1248.46			
h,k,lmax	24,10,24	24,10,24	1	
Nref	3193	3189		
Tmin,Tmax	0.975,0.984	0.979,1	.000	
Tmin'	0.975			
Correction method= # Reported T Limits: Tmin=0.979 Tmax=1.000 AbsCorr = MULTI-SCAN				
Data completene	ata completeness= 0.999 Theta(max)= 26.372		372	
R(reflections) = 0.0503(1819) wR2(reflections) = 0.1377(3189)				
S = 1.010 Npar= 209				

X-ray crystal structure of 4a

Datablock: I

Bond precision:	C-C = 0.0045 A	Wavelength	=0.71073	
Cell: Temperature:	a=5.4320(2) alpha=90 120 K	b=19.9758(9) beta=97.033(2)	c=17.4712(8) gamma=90	
Volume Space group Hall group Moiety formula Sum formula Mr Dx,g cm-3 Z Mu (mm-1) F000 F000' h,k,lmax Nref Tmin,Tmax Tmin'	Calculated 1881.51(14) P 21/n -P 2yn C23 H17 N3 O3 S C23 H17 N3 O3 S 415.46 1.467 4 0.205 864.0 864.85 7,26,23 4672 0.893,0.948 0.866	Reported 1881.51(1 P 21/n -P 2yn C23 H17 N C23 H17 N 415.45 1.467 4 0.205 864.0 7,26,23 4668 0.893,0.9	4) 3 O3 S 3 O3 S 48	
Correction method= # Reported T Limits: Tmin=0.893 Tmax=0.948 AbsCorr = MULTI-SCAN Data completeness= 0.999 Theta(max)= 28.278 R(reflections)= 0.0674(.3599) wR2(reflections)= 0.1920(.4668)				
S = 1.159 Npar= 315				

X-ray crystal structures of 7

Datablock: g170824a

Bond precision	: C-C = 0.0119 A	Waveleng	gth=0.71073
Cell:	a=10.2838(5)	b=12.8459(10)	c=20.2842(18)
	alpha=101.537(7)	beta=91.712(5)	gamma=108.106(6)
Temperature:	293 K		
	Calculated	Reporte	ed
Volume	2483.3(3)	2483.3	(3)
Space group	P -1	P -1	
Hall group	-P 1	-P 1	
Moiety formula	2(C52 H43 Br Cu] C H2 Cl2	N3 O P2), C52 H43 0.5(C H	3 Br Cu N3 O P2, H2 Cl2)
Sum formula	C105 H88 Br2 Cl2 P4	Cu2 N6 O2 C52.50 P2	H46 Br Cl Cu N3 O
Mr	1947.49	975.76	
Dx,q cm-3	1.302	1.305	
Z	1	2	
Mu (mm-1)	1.401	1.402	
F000	998.0	1002.0	
F000′	999.04		
h,k,lmax	12,16,25	12,16,2	25
Nref	10150	9961	
Tmin,Tmax	0.764,0.810	0.707,3	1.000
Tmin'	0.496		
Correction met AbsCorr = MULT	hod= # Reported T I-SCAN	Limits: Tmin=0.70	07 Tmax=1.000
Data completen	ess= 0.981	Theta(max) = 26	.370
R(reflections)	= 0.0729(5126)	wR2(reflection	s)= 0.2325(9961)
S = 1.032	= 1.032 Npar= 554		