Electronic Supplementary Information

Ancistrocyclinones A and B, unprecedented pentacyclic N,C-coupled naphthylisoquinoline alkaloids, from the Chinese liana Ancistrocladus tectorius

Raina Seupela, Yasmin Hembergera, Doris Feineis,a

Minjuan Xub,c, Ean-Jeong Seod, Thomas Efferthd,

Gerhard Bringmanna,*,

aInstitute of Organic Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany

bKey Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jia Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China

cMarine Drugs Research Center, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, P.R. China

dInstitute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, University of Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
Table of Contents

- Table 1: 1H and 13C NMR data of ancistrocyclinone A (5) and B (6) in MeOD (400 MHz and 150 MHz)
 4
- Figure 1: 1H NMR spectrum of ancistrocyclinone A (5) in MeOD
 5
- Figure 2: 13C NMR spectrum of ancistrocyclinone A (5) in MeOD
 6
- Figure 3: DEPT NMR spectrum of ancistrocyclinone A (5) in MeOD
 7
- Figure 4: 1H,1H-COSY spectrum of ancistrocyclinone A (5) in MeOD
 8
- Figure 5: NOESY spectrum of ancistrocyclinone A (5) in MeOD
 9
- Figure 6: HSQC spectrum of ancistrocyclinone A (5) in MeOD
 10
- Figure 7: HMBC spectrum of ancistrocyclinone A (5) in MeOD
 11
- Figure 8: HRESI spectrum of ancistrocyclinone A (5)
 12
- Figure 9: IR spectrum of ancistrocyclinone A (5)
 13
- Figure 10: ECD spectrum of ancistrocyclinone A (5)
 14
- Figure 11: Oxidative degradation products of ancistrocyclinone A (5)
 15
- Figure 12: 1H NMR spectrum of ancistrocyclinone B (6) in MeOD
 16
- Figure 13: 13C NMR spectrum of ancistrocyclinone B (6) in MeOD
 17
- Figure 14: DEPT NMR spectrum of ancistrocyclinone B (6) in MeOD
 18
- Figure 15: 1H,1H-COSY spectrum of ancistrocyclinone B (6) in MeOD
 19
- Figure 16: NOESY spectrum of ancistrocyclinone B (6) in MeOD
 20
- Figure 17: HSQC spectrum of ancistrocyclinone B (6) in MeOD
 21
- Figure 18: HMBC spectrum of ancistrocyclinone B (6) in MeOD
 22
- Figure 19: HRESI spectrum of ancistrocyclinone B (6)
 23
- Figure 20: IR spectrum of ancistrocyclinone B (6)
 24
- Figure 21: ECD spectrum of ancistrocyclinone B (6)
 25
- Figure 22: Oxidative degradation products of ancistrocyclinone B (6)
 26
- Table 2: Oxidation of 4’-O-Demethylancistrocladinium A (8)
 27
- Figure 23: Selected NMR data of chinones 11a and 11b
 28
- Figure 24. Assignment of the absolute axial configuration of the two atropodiastereomers of 11 by LC-ECD
 28
- Figure 25: 1H NMR spectrum of chinone 11a (major compound) in MeOD
 29
- Figure 26: 1H NMR spectrum of chinone 11b (minor compound) in MeOD
 30
- Figure 27: 13C NMR spectrum of chinone 11a (major compound) in MeOD
- Figure 28: 13C NMR spectrum of chinone 11b (minor compound) in MeOD
- Figure 29: DEPT NMR spectrum of chinone 11 in MeOD
- Figure 30: 1H, 1H-COSY spectrum of chinone 11 in MeOD
- Figure 31: NOESY spectrum of chinone 11 in MeOD
- Figure 32: HSQC spectrum of chinone 11 in MeOD
- Figure 33: HMBC spectrum of chinone 11 in MeOD
- Figure 34: HRESI mass spectrum of chinone 11.
- Figure 35: 1H NMR spectrum of synthetic ancistrocyclinone A (5) in MeOD
- Figure 36: 13C NMR spectrum of synthetic ancistrocyclinone A (5) in MeOD
- Figure 37: Comparison of the 1H NMR spectra of isolated and synthetic ancistrocyclinone A (5)
- Figure 38: Comparison of the 13C NMR spectra of isolated and synthetic ancistrocyclinone A (5)
- Figure 39: Cytotoxic activities of ancistrocladinium A (7a/b) and ancistrocyclinone A (5)
Table 1: 1H and 13C NMR data of ancistrocyclinone A (5) and B (6) in MeOD (400 MHz and 150 MHz).\(^a\)

<table>
<thead>
<tr>
<th>Position</th>
<th>δ_H</th>
<th>δ_C</th>
<th>δ_H</th>
<th>δ_C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>148.6</td>
<td>148.8</td>
<td>148.6</td>
<td>148.8</td>
</tr>
<tr>
<td>3</td>
<td>5.98 (m)</td>
<td>55.3</td>
<td>5.94 (m)</td>
<td>55.1</td>
</tr>
<tr>
<td>4</td>
<td>3.21 (dd, 16.9, 1.7)</td>
<td>34.3</td>
<td>3.13 (dd, 16.7, 1.7)</td>
<td>34.2</td>
</tr>
<tr>
<td></td>
<td>3.56 (dd, 16.6, 5.6)</td>
<td>3.51 (dd, 15.6, 5.1)</td>
<td>3.56 (dd, 16.6, 5.6)</td>
<td>3.51 (dd, 15.6, 5.1)</td>
</tr>
<tr>
<td>5</td>
<td>6.80 (d, 2.2)</td>
<td>108.4</td>
<td>6.60 (s)</td>
<td>108.5</td>
</tr>
<tr>
<td>6</td>
<td>168.2</td>
<td>167.2</td>
<td>162.9</td>
<td>162.9</td>
</tr>
<tr>
<td>7</td>
<td>6.82 (d, 2.2)</td>
<td>99.5</td>
<td>6.68 (d, 2.2)</td>
<td>100.2</td>
</tr>
<tr>
<td>8</td>
<td>162.9</td>
<td>110.3</td>
<td>139.4</td>
<td>139.5</td>
</tr>
<tr>
<td>9</td>
<td>109.7</td>
<td>141.0</td>
<td>141.0</td>
<td>141.1</td>
</tr>
<tr>
<td>10</td>
<td>139.4</td>
<td>146.0</td>
<td>146.0</td>
<td>146.0</td>
</tr>
<tr>
<td>1'</td>
<td>136.7</td>
<td>6.90 (d, 1.4)</td>
<td>136.6</td>
<td>6.90 (d, 1.4)</td>
</tr>
<tr>
<td>2'</td>
<td>184.2</td>
<td>184.3</td>
<td>163.9</td>
<td>163.7</td>
</tr>
<tr>
<td>3'</td>
<td>6.91 (d, 1.3)</td>
<td>122.5</td>
<td>8.15 (d, 10.0)</td>
<td>122.2</td>
</tr>
<tr>
<td>4'</td>
<td>8.93 (d, 10.0)</td>
<td>127.4</td>
<td>8.12 (d, 10.0)</td>
<td>127.3</td>
</tr>
<tr>
<td>5'</td>
<td>132.8</td>
<td>132.8</td>
<td>126.4</td>
<td>126.2</td>
</tr>
<tr>
<td>6'</td>
<td>115.1</td>
<td>115.2</td>
<td>115.1</td>
<td>115.2</td>
</tr>
<tr>
<td>11'</td>
<td>9.19 (s)</td>
<td>125.0</td>
<td>9.17 (s)</td>
<td>125.0</td>
</tr>
<tr>
<td>3-CH₃</td>
<td>1.50 (d, 6.9)</td>
<td>16.7</td>
<td>1.49 (d, 6.9)</td>
<td>16.6</td>
</tr>
<tr>
<td>6-OCH₃</td>
<td>4.01 (s)</td>
<td>56.7</td>
<td>4.01 (s)</td>
<td>56.7</td>
</tr>
<tr>
<td>8-OCH₃</td>
<td>4.12 (s)</td>
<td>57.2</td>
<td>4.08 (s)</td>
<td>57.0</td>
</tr>
<tr>
<td>2'-CH₃</td>
<td>2.64 (d, 1.4)</td>
<td>18.7</td>
<td>2.63 (d, 1.4)</td>
<td>18.7</td>
</tr>
<tr>
<td>5'-OCH₃</td>
<td>4.26 (s)</td>
<td>57.9</td>
<td>4.25 (s)</td>
<td>57.9</td>
</tr>
</tbody>
</table>

\(^a\) Multiplicities and coupling constants J (Hz) are shown in parentheses, δ values are given in ppm.
Figure 1: 1H NMR spectrum of ancistrocyclinone A (5) in MeOD.
Figure 2: 13C NMR spectrum of ancistrocyclinone A (5) in MeOD.
Figure 3: DEPT NMR spectrum of ancistrocyclinone A (5) in MeOD.
Figure 4: 1H,1H-COSY spectrum of ancistrocyclinone A (5) in MeOD.
Figure 5: NOESY spectrum of ancistrocyclinone A (5) in MeOD.
Figure 6: HSQC spectrum of ancistrocyclinone A (5) in MeOD.
Figure 7: HMBC spectrum of ancistrocyclinone A (5) in MeOD.
Figure 8: HRESI mass spectrum of ancistrocyclinone A (5).
Figure 9: IR spectrum of ancistrocyclone A (5).
Figure 10: ECD spectrum of ancistrocyclinone A (5).
Figure 11: Oxidative degradation products of ancistrocyclinone A (5).

Ala = Alanine
N-Me-Ala = N-Methylalanine
ABA = 3-Aminobutyric acid
N-Me-ABA = N-Methyl-3-aminobutyric acid
Figure 12: 1H NMR spectrum of ancistrocyclinone B (6) in MeOD.
Figure 13: 13C NMR spectrum of ancistrocyclinone B (6) in MeOD.
Figure 124: DEPT NMR spectrum of ancistrocyclinone B (6) in MeOD.
Figure 15: 1H,1H-COSY spectrum of ancistrocyclone B (6) in MeOD.
Figure 16: NOESY spectrum of ancistrocyclinone B (6) in MeOD.
Figure 17: HSQC spectrum of ancistrocyclinone B (6) in MeOD.
Figure 18: HMBC spectrum of ancistrocyclinone B (6) in MeOD.
Figure 19: HRESI mass spectrum of ancistrocyclinone B (6).
Figure 20: IR spectrum of ancistrocyclinone B (6).
Figure 21: ECD spectrum of ancistrocyclinone B (6).
Figure 22: Oxidative degradation products of ancistrocyclinone B (6).
Table 2: Oxidation of 4’-O-demethylancistrocladinium A (8) to 5.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Oxidizing agent</th>
<th>Yield 11 [%]</th>
<th>Yield 5 [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fremy salt</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>O₂</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Pb(OAc)₄</td>
<td>23</td>
<td>36</td>
</tr>
<tr>
<td>4</td>
<td>Ag₂O</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>MnO₂</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>H₂O₂</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>K₂Cr₂O₄</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>K₃[Fe(CN)₆]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>KClO₄</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Figure 23: Selected NMR data of chinones 11a and 11b: (A) 1H and 13C NMR data (δ in ppm) of 11a, and (b) of 11b, (c) NOESY (double red arrows) correlations indicative of the relative configurations at the biaryl axes in 11a, and (d) in 11b.

Figure 24: Assignment of the absolute axial configuration of the two atropo-diastereomers of 11 by LC-ECD coupling and by comparison of the LC-ECD spectra of peak A (left) and peak B (right) with the ECD curve of 4'-O-demethylancistrocladinium A (8a).
Figure 25: 1H NMR spectrum of chinone 11a (major compound) in MeOD.
Figure 26: 1H NMR spectrum of chinone 11b (minor compound) in MeOD.
Figure 27: 13C NMR spectrum of chinone 11a (major compound) in MeOD.
Figure 28: 13C NMR spectrum of chinone 11b (minor compound) in MeOD.
Figure 29: DEPT NMR spectrum of chinone 11 in MeOD.
Figure 30: $^{1}H,^{1}H$-COSY spectrum of chinone 11 in MeOD.
Figure 31: NOESY spectrum of chinone 11 in MeOD.
Figure 32: HSQC spectrum of chinone 11 in MeOD.
Figure 33: HMBC spectrum of chinone 11 in MeOD.
Figure 34: HRESI mass spectrum of chinone 11.
Figure 35: 1H NMR spectrum of synthetic ancistrocyclinone A (5) in MeOD.
Figure 36: 13C NMR spectrum of synthetic ancistrocyclinone A (5) in MeOD.
Figure 37: Comparison of the 1H NMR spectra of isolated (top) and synthetic (bottom) ancistrocyclinone A (5).
Figure 38: Comparison of the 13C NMR spectra of isolated (top) and synthetic (bottom) ancistrocyclinone A (5).
Figure 39: Cytotoxic activities of ancistrocladinium A (7a/b) and ancistrocyclinone A (5) against parental drug-sensitive CCRF-CEM leukemia cells and their multi-drug resistant subline, CEM/ADR5000. The compounds were dissolved in DMSO (< 1%) and cell culture medium at concentrations of 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, and 100 μM. Cell viability was assessed by the resazurin assay. Mean values and standard deviation of three independent experiments with each six parallel measurements are shown.