Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2017

SUPPORTING INFORMATION

Solid State and Surface Effects in Thin-Film Molecular Switches

Jonathan P. Hopwood and Jacob W. Ciszek*

Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 W. Sheridan Rd. Chicago, Illinois 60660

Table of Contents

General Experimental Methods	S2
Synthesis of DHI-9	S2
Figure S1. Solution UV-vis of DHI-1, 6, and 14 half-life data	S 3
Figure S2. PM-IRRAS spectra for DHI thin-films	S 4
Figure S3. PM-IRRAS spectra for DHI-9	S 5
¹ H and ¹³ C NMR Spectra for DHI-9	S6-S7
References	S8

General Experimental Methods:

All reactions were run under a nitrogen atmosphere unless otherwise stated. All column chromatography separations were performed on silica gel 60 (40-63 μ m from BDH). Thin layer chromatography was carried out on silica gel (F₂₅₄) with glass support. All NMR spectra were taken on a Varian 500 MHz spectrometer. All ¹H and ¹³C chemical shifts (δ) were referenced to trimethylsilane in CDCl₃. IR spectra were acquired on a Shimadzu IRAffinity-1S FTIR with a Pike Technologies MIRacle single reflection horizontal ATR accessory. Mass spectra were acquired on a Shimadzu ESI-TOF. Dimethyl spiro[cycloprop[2]ene-1,9'-fluorene]-2,3-dicarboxylate was prepared following a previous procedure.¹

Synthesis of DHI-9:

7'-Methyl-8a'*H***-spiro[fluorine-9,1'-indolizine]-2',3'-dicarboxilate (DHI-9**): 4-Methylpyridine (0.010 g, 0.11 mmol) and dimethyl spiro[cycloprop[2]ene-1,9'-fluorene]-2,3-dicarboxylate (0.037 g, 0.12 mmol) were added to a round bottomed flask. The flask was evacuated and filled with nitrogen (×3). Dichloromethane (2 mL) was added and the flask and the solution was stirred in the dark for 4 h. The product (0.028 g, 0.069 mmol) was purified via column chromatography (100% DCM, $R_f = 0.38$) and collected as a green oil at a 65% yield. ¹H NMR (500 MHz) δ 7.72 (d, *J* = 7.3 Hz, 2H), 7.56 (d, *J* = 7.3 Hz, 1H), 7.46 (d, *J* = 7.6 Hz, 1H), 7.40-7.29 (m, 3H), 7.22 (t, *J* = 7.4 Hz, 1H), 6.40 (d, *J* = 7.3 Hz, 1H), 5.43 (s, 1H), 5.06 (dd, *J* = 7.5, 1.1 Hz, 1H), 4.19 (s, 1H), 3.99 (s, 3H), 3.26 (s, 3H), 1.51 (s, 3H). ¹³C NMR (125 MHz) δ 163.6, 162.1, 147.3, 146.5, 142.5, 141.5, 140.1, 131.5, 128.0, 127.8, 127.3, 126.8, 124.6, 123.7, 123.3, 119.7, 119.4, 112.5, 108.6, 108.2, 69.9, 64.2, 53.1, 50.9, 20.6. IR (ATR, cm⁻¹): 2949, 2789, 1742, 1694, 1649, 1593, 1557, 1460, 1435, 1393, 1308, 1263, 1225, 1182, 1130, 1084, 731. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₅H₂₁NO₄H 400.1504; Found 400.1525.

Figure S1: Solution UV-vis of DHI-1, 6, and 14 half-life data

Optical of properties of (a) **DHI-1** (7.0×10^{-5} M), (b) **6** (6.9×10^{-5} M), and (c) **14** (7.0×10^{-5} M) were studied via solution (dichloromethane) UV-vis. In the spiro form (yellow), the typical π - π * transition can be observed at 397, 385, and 386 nm respectively. Upon irradiation with 400 nm light for 2 minutes (green), the presumed charge transfer band is observed at 657, 586, and 602 nm respectively. Half-lives (insets) were found to be 115, 66, and 47 seconds respectively and followed predicted first order rate.

Figure S2: PM-IRRAS spectra for DHI thin-films

DHI-1 (a-c), 6 (d-f), and 14 (g-i) spiro (yellow) thin-films were irradiated with 400 nm light for 2 (blue) and 8 minutes (green). Consumption of the stretch at 1560 cm⁻¹ along with the growth of the stretch at 1500 cm⁻¹ indicates successful photoconversion.

Figure S3: PM-IRRAS spectra of DHI-9

Representative spectra for **DHI-9** thin-films. The spiro (yellow) film was irradiated with 400 nm light for 2 (blue), 8 (green), and 13 (black dotted) minutes. The consumption of the stretch at 1560 cm⁻¹ along with the growth of the stretch at 1500 cm⁻¹, indicates successful photoconversion.

S6

S7

References

 Bartucci, M. A.; Wierzbiki, P. M.; Gwengo, C.; Shajan, S.; Hussain, S. H.; Ciszek, J. W. Synthesis of dihydroindolizines for potential photoinduced work function alteration. *Tetrahedron Lett.* 2010, *51*, 6839-6842