Supporting Information

Synthesis and evaluation of new 5-aminolevulinic acid derivatives as prodrugs of protoporphyrin for photodynamic therapy

Wei Zhu¹, Ying-Hua Gao¹, Chun-Hong Song¹, Zhi-Bin Lu¹, Tabisa Namulinda¹, Yi-Ping Han², Yi-Jia Yan³, Lai-Xing Wang²*, and Zhi-Long Chen¹*

¹ Department of pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
² Shanghai Changhai Hospital, 200433, China
³ Shanghai Xianhui Pharmaceutical Co. Ltd., Shanghai 200433, China
* Corresponding author: Lai-Xing Wang, E-mail: wlx920@163.com; Zhi-Long Chen. E-mail: zlchen1967@qq.com

Table of contents

NMR spectrum and MS spectrum of 5a..S1
NMR spectrum and MS spectrum of 5b..S2
NMR spectrum and MS spectrum of 5c..S3
NMR spectrum and MS spectrum of 5d..S4
NMR spectrum and MS spectrum of 6a..S5
NMR spectrum and MS spectrum of 7a..S6
NMR spectrum and MS spectrum of 9a..S7
NMR spectrum and MS spectrum of 9b..S8
NMR spectrum and MS spectrum of 9c..S9
NMR spectrum and MS spectrum of 11a..S10
NMR spectrum and MS spectrum of 11b..S11
NMR spectrum and MS spectrum of 11c..S12
NMR spectrum and MS spectrum of 13a..S13
Images of mice bearing S 180 tumors for 11c, 9c, 11b, 9b...S14-17
Synthesis and characterization

1H, 13C NMR spectra were measured on a Bruker 400 MHz spectrometer. Chemical shifts were reported as in units of parts per million (ppm), and J-values are in Hz. ESI-MS spectra were recorded on a Micromass triple quadrupole mass spectrometer. HRMS spectra were recorded on a Brucker Daltonics APEXIII 7.0 tesla FT mass spectrometer.

Figure S1-1. 1H NMR (DMSO-d_6, 400 MHz) of 5a

Figure S1-2. 13C NMR (DMSO-d_6, 100 MHz) of 5a
Figure S1-3. HRMS (MALDI-TOF) of 5a

Figure S2-1. 1H NMR (CDCl$_3$, 400 MHz) of 5b
Figure S2-2. 13C NMR (CDCl$_3$, 100 MHz) of 5b

Figure S2-3. HRMS (MALDI-TOF) of 5b
Figure S3-1. 1H NMR (CDCl$_3$, 400 MHz) of 5c

Figure S3-2. 13C NMR (CDCl$_3$, 100 MHz) of 5c
Figure S3-3. HRMS (MALDI-TOF) of 5c

<table>
<thead>
<tr>
<th>m/z</th>
<th>Theo. Mass</th>
<th>Delta (ppm)</th>
<th>RDB</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>278.1387</td>
<td>278.1387</td>
<td>0.20</td>
<td>6.5</td>
<td>C₁₅H₂₀O₄N</td>
</tr>
<tr>
<td>278.1400</td>
<td>-4.61</td>
<td>-11.5</td>
<td>C₁₆H₁₆NS</td>
<td></td>
</tr>
</tbody>
</table>

Figure S4-1. ¹H NMR (CDCl₃, 400 MHz) of 5d
Figure S4-2. 13C NMR (CDCl$_3$, 100 MHz) of 5d

Figure S4-3. HRMS (MALDI-TOF) of 5d
Figure S5-1. 1H NMR (CDCl$_3$, 400 MHz) of 6a

Figure S5-2. 13C NMR (CDCl$_3$, 100 MHz) of 6a
Figure S5-3. HRMS (MALDI-TOF) of 6a

Figure S6-1. ¹H NMR (CDCl₃, 400 MHz) of 7a
Figure S6-2. 13C NMR (CDCl$_3$, 100 MHz) of 7a

Figure S6-3. HRMS (MALDI-TOF) of 7a
Figure S7-1. 1H NMR (CDCl$_3$, 400 MHz) of 9a

[Image: H NMR spectrum of 9a]

Figure S7-2. 13C NMR (CDCl$_3$, 100 MHz) of 9a

[Image: C NMR spectrum of 9a]
Figure S7-3. HRMS (MALDI-TOF) of 9a

<table>
<thead>
<tr>
<th>m/z</th>
<th>Theo. Mass (ppm)</th>
<th>Delta (ppm)</th>
<th>REL.</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>413.1708</td>
<td>413.1707</td>
<td>0.11</td>
<td>11.5</td>
<td>C₂₆H₄₉O₄N₅</td>
</tr>
<tr>
<td>413.1694</td>
<td>413.1694</td>
<td>3.36</td>
<td>12.0</td>
<td>C₂₆H₄₉O₄N₅</td>
</tr>
</tbody>
</table>

Figure S8-1. ¹H NMR (CDCl₃, 400 MHz) of 9b
Figure S8-2. 13C NMR (CDCl$_3$, 100 MHz) of 9b

Figure S8-3. HRMS (MALDI-TOF) of 9b

Elemental composition search on mass 469.23

<table>
<thead>
<tr>
<th>m/z</th>
<th>Theo. Mass</th>
<th>Delta (ppm)</th>
<th>RDB equiv.</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>469.2334</td>
<td>469.2333</td>
<td>0.12</td>
<td>11.5</td>
<td>C${26}$H${35}$O$_6$N$_2$</td>
</tr>
<tr>
<td>469.2320</td>
<td></td>
<td>2.98</td>
<td>12.0</td>
<td>C${24}$H${31}$O$_5$N$_2$</td>
</tr>
</tbody>
</table>
Figure S9-1. 1H NMR (CDCl$_3$, 400 MHz) of 9c

Figure S9-2. 13C NMR (DMSO-d_6, 100 MHz) of 9c
Figure S9-3. HRMS (MALDI-TOF) of 9c

Figure S10-1. 1H NMR (CDCl$_3$, 400 MHz) of 11a
Figure S10-2. 13C NMR (CDCl$_3$, 100 MHz) of 11a

Figure S10-3. HRMS (MALDI-TOF) of 11a
Figure S11-1. 1H NMR (CDCl$_3$, 400 MHz) of 11b

Figure S11-2. 13C NMR (CDCl$_3$, 100 MHz) of 11b
Figure S11-3. HRMS (MALDI-TOF) of 11b

Elemental composition search on mass 435.25

<table>
<thead>
<tr>
<th>m/z</th>
<th>Theo.</th>
<th>Delta (ppm)</th>
<th>RDB</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>435.2490</td>
<td>435.2490</td>
<td>0.06</td>
<td>7.5</td>
<td>C23 H36 O6 N3</td>
</tr>
<tr>
<td>435.2476</td>
<td>435.2476</td>
<td>3.15</td>
<td>8.0</td>
<td>C21 H35 O5 N5</td>
</tr>
</tbody>
</table>

Figure S12-1. 1H NMR (CDCl$_3$, 400 MHz) of 11c
Figure S12-2. 13C NMR (DMSO-d_6, 100 MHz) of 11c

Figure S12-3. HRMS (MALDI-TOF) of 11c
Figure S13-1. 1H NMR (CDCl$_3$, 400 MHz) of 13a

Figure S13-2. 13C NMR (DMSO-d$_6$, 100 MHz) of 13a
Figure S13-3. HRMS (MALDI-TOF) of 13a

Figure S14 Efficacy of 11c against sarcoma cell in Kunming mice bearing S 180 cells. Images of mice bearing S 180 tumors at 15 mg/kg before and following PDT at 1 h, 3 h, 5 h, and 7 h on the 5th day.

Figure S15 Efficacy of 9c against sarcoma cell in Kunming mice bearing S 180 cells. Images of mice bearing S 180 tumors at 15 mg/kg before and following PDT at 1 h, 3 h, 5 h, and 7 h on the 5th day.
Figure S16 Efficacy of 11b against sarcoma cell in Kunming mice bearing S 180 cells. Images of mice bearing S 180 tumors at 15 mg/kg before and following PDT at 1 h, 3 h, 5 h, and 7 h on the 5th day.

Figure S17 Efficacy of 9b against sarcoma cell in Kunming mice bearing S 180 cells. Images of mice bearing S 180 tumors 15 mg/kg before and following PDT at 1 h, 3 h, 5 h, and 7 h on the 5th day.