Electronic Supporting Information

Synthesis of a Self-Healing Siloxane-Based Elastomer Cross-Linked via a Furan-Modified Polyhedral Oligomeric Silsesquioxane: Investigation of a Thermally Reversible Silicon-Based Cross-Link

Amin Nasresfahani, Paul M. Zelisko*
Department of Chemistry and Centre for Biotechnology, Brock University, St. Catharines, Ontario, Canada
*Corresponding author's email: pzelisko@brocku.ca

Contents

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1H NMR spectrum of compound 3.</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>13C NMR spectrum of compound 3.</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>29Si NMR spectrum of compound 3.</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1H NMR spectrum of compound 5.</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>13C NMR spectrum of compound 5.</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>29Si NMR spectrum of compound 5.</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>1H NMR spectrum of compound 8.</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>13C NMR spectrum of compound 8.</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>1H NMR spectrum of compound 10.</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>13C NMR spectrum of compound 10.</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>29Si NMR spectrum of compound 10.</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>1H NMR spectrum of PDMS-2.</td>
<td>7</td>
</tr>
<tr>
<td>13</td>
<td>13C NMR spectrum of PDMS-2.</td>
<td>8</td>
</tr>
<tr>
<td>14</td>
<td>29Si NMR spectrum of PDMS-2.</td>
<td>8</td>
</tr>
<tr>
<td>15</td>
<td>1H NMR spectrum of PDMS-3.</td>
<td>9</td>
</tr>
<tr>
<td>16</td>
<td>13C NMR spectrum of PDMS-3.</td>
<td>9</td>
</tr>
<tr>
<td>17</td>
<td>29Si NMR spectrum of PDMS-3.</td>
<td>10</td>
</tr>
<tr>
<td>18</td>
<td>1H NMR spectrum of compound 12.</td>
<td>10</td>
</tr>
<tr>
<td>19</td>
<td>13C NMR spectrum of compound 12.</td>
<td>11</td>
</tr>
<tr>
<td>20</td>
<td>29Si NMR spectrum of compound 12.</td>
<td>11</td>
</tr>
<tr>
<td>21</td>
<td>MALDI-ToF mass spectrometry of 12.</td>
<td>12</td>
</tr>
<tr>
<td>22</td>
<td>ATR-IR spectrums of the diene(10), the dienophile (5) and a DA reaction mixture which contained 88% adduct (11) according to 1H NMR.</td>
<td>12</td>
</tr>
<tr>
<td>23</td>
<td>1H NMR spectroscopy of a Diels-Alder reaction mixture containing 10, 5, and 11.</td>
<td>13</td>
</tr>
<tr>
<td>24</td>
<td>gCOSY NMR spectroscopy of a Diels-Alder reaction mixture. Only the endo isomer correlates with the bridge's hydrogen.</td>
<td>14</td>
</tr>
<tr>
<td>25</td>
<td>A series of 1H NMR spectra acquired for sample B in different time periods and various temperatures followed subsequently.</td>
<td>14</td>
</tr>
<tr>
<td>26</td>
<td>A series of 1H NMR spectra acquired for sample A in different time periods and various temperatures followed subsequently.</td>
<td>15</td>
</tr>
<tr>
<td>27</td>
<td>1H NMR spectra of a DA mixture sample contained a high quantity of the adduct (11) before and after exposing to 136°C for 2 min.</td>
<td>15</td>
</tr>
</tbody>
</table>
Figure 1. 1H NMR spectrum of compound 3.

Figure 2. 13C NMR spectrum of compound 3.
Figure 3. 29Si NMR spectrum of compound 3.

Figure 4. 1H NMR spectrum of compound 5.
Figure 5. 13C NMR spectrum of compound 5.

Figure 6. 29Si NMR spectrum of compound 5.
Figure 7. 1H NMR spectrum of compound 8.

Figure 8. 13C NMR spectrum of compound 8.
Figure 9. 1H NMR spectrum of compound 10.

Figure 10. ^{13}C NMR spectrum of compound 10.
Figure 11. 29Si NMR spectrum of compound 10.

Figure 12. 1H NMR spectrum of PDMS-2.
Figure 13. 13C NMR spectrum of PDMS-2.

Figure 14. 29Si NMR spectrum of PDMS-2.
Figure 15. 1H NMR spectrum of PDMS-3.

Figure 16. 13C NMR spectrum of PDMS-3.
Figure 17. 29Si NMR spectrum of PDMS-3.

Figure 18. 1H NMR spectrum of compound 12.
Figure 19. 13C NMR spectrum of compound 12.

Figure 20. 29Si NMR spectrum of compound 12.
Figure 21. MALDI-ToF mass spectrometry of 12.

Sample Prep: Acetone/NaAc/DITH
Ion Source: MALDI
Measured mass: 3152.363 m/z
Theoretical mass of [C144H248O44Si16+Na]+: 3152.337 m/z
\(\Delta m/m = 8.2 \text{ppm} \)

Figure 22. ATR-IR spectrums of the diene (10), the dienophile (5) and a DA reaction mixture which contained 88% adduct (11) according to \(^1\)H NMR.
Figure 23. 1H NMR spectroscopy of a Diels-Alder reaction mixture containing 10, 5, and 11.
Figure 24. gCOSY NMR spectroscopy of a Diels-Alder reaction mixture. Only the endo isomer correlates with the bridge’s hydrogen.

Figure 25. A series of 1H NMR spectra acquired for sample B in different time periods and various temperatures followed subsequently.
Figure 26. A series of 1H NMR spectra acquired for sample A in different time periods and various temperatures followed subsequently.

Figure 27. 1H NMR spectra of a DA mixture sample contained a high quantity of the adduct (11) before and after exposing to 136°C for 2 min.