Electronic Supplementary Information (ESI) for

Donor–Acceptor Polymers with Tunable Infrared Photoresponse

Alexander E. London,\(^a\) Lifeng Huang,\(^a\) Benjamin A. Zhang,\(^a\) M. Belen Oviedo,\(^b\) Joshua Tropp,\(^a\) Weichuan Yao,\(^c\) Zhenghui Wu,\(^c\) Bryan M. Wong,\(^b\) Tse Nga Ng,\(^c\) and Jason D. Azoulay\(^a\) *

\(^a\)School of Polymers and High Performance Materials, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, Mississippi 39406, United States. \(^b\)Department of Chemical & Environmental Engineering and Materials Science & Engineering, University of California Riverside, Riverside, California 92521, United States. \(^c\)Department of Electrical and Computer Engineering, 9500 Gilman Drive, University of California San Diego, La Jolla, California 92093, United States.

*To whom correspondence should be addressed. e-mail: jason.azoulay@usm.edu
Computation. All DFT and TD-DFT calculations were carried out with the Gaussian 09 package (version C.01)\(^1\) employing the B3LYP exchange-correlation functional\(^2\) and a polarized 6-31G(d) basis set using default SCF convergence criteria (density matrix converged to at least \(10^{-8}\)), DFT integration grid (75 radial and 302 angular quadrature points) and optimization convergence criteria (RMS force of at least 0.0003 Hartree/Bohr). The HOMO and LUMO figures for the \(P_2\) and \(P_3\) tetramers are shown in Figures S1-S4.

<table>
<thead>
<tr>
<th></th>
<th>HOMO(^a)</th>
<th>LUMO(^a)</th>
<th>(E_g)(^b)</th>
<th>(f)(^c)</th>
<th>(E_g^{\text{vert}}(n\rightarrow\infty))(^d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1b</td>
<td>-4.62</td>
<td>-3.15</td>
<td>1.47</td>
<td>6.82</td>
<td>1.08</td>
</tr>
<tr>
<td>P1</td>
<td>-4.32</td>
<td>-2.98</td>
<td>1.34</td>
<td>7.02</td>
<td>1.04</td>
</tr>
<tr>
<td>P2</td>
<td>-4.25</td>
<td>-3.01</td>
<td>1.24</td>
<td>6.56</td>
<td>0.94</td>
</tr>
<tr>
<td>P3</td>
<td>-4.40</td>
<td>-3.28</td>
<td>1.12</td>
<td>5.91</td>
<td>0.88</td>
</tr>
<tr>
<td>P4</td>
<td>-4.16</td>
<td>-3.25</td>
<td>0.91</td>
<td>10.01</td>
<td>0.68</td>
</tr>
<tr>
<td>P5</td>
<td>-4.14</td>
<td>-3.26</td>
<td>0.88</td>
<td>9.74</td>
<td>0.63</td>
</tr>
</tbody>
</table>

\(^a\)Frontier molecular orbital energies as determined at the the B3LYP/6-31G(d) level of theory. \(^b\)HOMO/LUMO orbital energy gap \((E_g)\). \(^c\)Oscillator strength \((f)\). \(^d\)\(S_0\) to \(S_1\) vertical transition energy extrapolated to \(n = \infty\) using the Kuhn equation \((E_g^{\text{vert}}(n\rightarrow\infty))\). All energies are in eV and oscillator strength is a unitless quantity. \(^3\)Data adopted from reference 3.
Figure S1. Optimized ground-state (S_0) geometric structures for the **P2** tetramer ($n = 4$) and pictorial representation of the HOMO wavefunction as determined at the B3LYP/6-31G(d) level of theory.

Figure S2. Pictorial representation of the LUMO wavefunction for the **P2** tetramer ($n = 4$) as determined at the B3LYP/6-31G(d) level of theory.
Figure S3. Optimized ground-state (S_0) geometric structures for the P3 tetramer ($n = 4$) and pictorial representation of the HOMO wavefunction as determined at the B3LYP/6-31G(d) level of theory.

Figure S4. Pictorial representation of the LUMO wavefunction for the P3 tetramer ($n = 4$) as determined at the B3LYP/6-31G(d) level of theory.
Figure S5. Repeat unit of P1a, P1b, and P1 and bond length plots of the (central dimer) of the oligomers with $n = 6$ (C_1-C_{12} shown for clarity). Bond length values are in Å.

Figure S6. Repeat unit of P1-P3 and bond length plots of the (central dimer) of the oligomers with $n = 6$ (C_1-C_{12} shown for clarity). Bond length values are in Å.
Figure S7. Repeat unit of P4 and P5 and bond length plots of the (central dimer) of the oligomers with $n = 6$ (C_1-C_{20} shown for clarity). Bond length values are in Å.

Figure S8. Side view of the optimized geometry of $(P1)_4$.
Figure S9. Torsional energy as a function of the dihedral angle for the P1 dimer calculated at the B3LYP/6-31G(d) level of theory.

Figure S10. S1 excitation energy as a function of the dihedral angle for the P1 dimer calculated with time-dependent DFT at the B3LYP/6-31G(d) level of theory.
Figure S11. Absorption squared plots of P1-P5 as thin films.

Figure S12. CV of P1–P5 (third scan).
Figure S13. Absorption spectra of P3 thin films with varying ratios of [70]PCBM.

Figure S14. 1H NMR spectra of 1a.
Figure S15. 13C NMR spectra of 1a.

Figure S16. 1H NMR spectra of 1b.
Figure S17. 13C NMR spectra of 1b.

Figure S18. 1H NMR spectra of 2a.
Figure S19. 13C NMR spectra of 2a.

Figure S20. 1H NMR spectra of 2b.
Figure S21. 13C NMR spectra of 2b.

Figure S22. 1H NMR spectra of 3a.
Figure S23. 13C NMR spectra of 3a.

Figure S24. 1H NMR spectra of 3b.
Figure S25. 13C NMR spectra of 3b.

Figure S26. 1H NMR spectra of P1.
Figure S27. 1H NMR spectra of P2.

Figure S28. 1H NMR spectra of P3.
Figure S29. 1H NMR spectra of P4.

Figure S30. 1H NMR spectra of P5.
References
1. Gaussian 09, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
 Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.;
 E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.;
 Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken,
 V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;
 Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ő.;
 Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
3. M. E. Foster, B. A. Zhang, D. Murtagh, Y. Liu, M. Y. Sfeir, B. M. Wong and J. D. Azoulay,