Supplementary information

Versatile oligomers and polymers from flavonoids – a new approach to

synthesis

Susan Oliver,^{a,b} James M. Hook,^c and Cyrille Boyer^{a,b*}

^{*a}</sup><i>Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, University of New South Wales, Sydney, Australia 2052.*</sup>

^bCentre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, Australia 2052.

^cNMR Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia 2052.

Additional figures

Figure S1: SEC calibration curve for polycatechin (Y = -0.3153*X + 12.2, r square = 0.9997) and polystyrene (Y = -0.169*X + 8.403, r square = 0.9947)

Figure S2: SEC of purified polymers prepared at varying temperatures with 15% v/v DMSO and 2 M HCl.

Figure S3: TGA traces for catechin and polycat.

Figure S4: SEC of purified polyqcn prepared at 70 °C with 66% v/v DMSO and 4 M HCl.

Figure S5: Digital photograph of quercetin and polyqcn-70

Figure S6: ¹H NMR spectra of a) catechin; b) polycat-40; c) polycat-55 in DMSO-d6 at 25 ^{0}C

Figure S7: ¹H NMR spectra of a) quercetin; b) polyqcn in DMSO-d6 at 25 $^{\circ}$ C

Figure S8: Overlay of ¹H-¹³C HSQC and ¹H-¹³C HMBC of catechin in DMSO-d6 at 25 ^oC.

Figure S9: Overlay of ¹H-¹³C HSQC and ¹H-¹³C HMBC of quercetin in DMSO-d6 at 25 ⁰C.

Figure S10: Overlay of ¹H-¹³C HSQC and ¹H-¹³C HMBC of polyqcn in DMSO-d6 at 25 ⁰C.