Superbase catalyzed regioselective polyhydroalkoxylation of alkynes: A facile route towards functional poly(vinyl ether)s

Jia Wang, Baixue Li, Dehua Xin, Rongrong Hu, Zujin Zhao, Anjun Qin and Ben Zhong Tang

a State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.

b Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China.
Contents

Experimental section S4

Figure S1. (A) TGA thermograms and (B) DSC thermograms of polymers. S5

Figure S2. FT-IR spectra of 1a (A), 2a (B) and P1a2a (C). S6

Figure S3. FT-IR spectra of 1a (A), 2c (B) and P1a2c (C). S6

Figure S4. FT-IR spectra of 1b (A), 2a (B) and P1b2a (C). S7

Figure S5. FT-IR spectra of 1b (A), 2b (B) and P1b2b (C). S7

Figure S6. FT-IR spectra of 1b (A), 2c (B) and P1b2c (C). S8

Figure S7. FT-IR spectra of 1c (A), 2a (B) and P1c2a (C). S8

Figure S8. FT-IR spectra of 1c (A), 2b (B) and P1c2b (C). S9

Figure S9. FT-IR spectra of 1c (A), 2c (B) and P1c2c (C). S9

Figure S10. 1H NMR spectra of 1a (A), 2a (B), and P1a2a (C) in CDCl3. The solvent peaks are marked with asterisks. S10

Figure S11. 1H NMR spectra of 1a (A), 2c (B), and P1a2c (C) in CDCl3. The solvent peaks are marked with asterisks. S11

Figure S12. 1H NMR spectra of 1b (A), 2a (B), and P1b2a (C) in CDCl3. The solvent peaks are marked with asterisks. S11

Figure S13. 1H NMR spectra of 1b (A), 2b (B), and P1b2b (C) in CDCl3. The solvent peaks are marked with asterisks. S13

Figure S14. 1H NMR spectra of 1b (A), 2c (B), and P1b2c (C) in CDCl3. The solvent peaks are marked with asterisks. S14

Figure S15. 1H NMR spectra of 1c (A), 2a (B), and P1c2a (C) in CDCl3. The solvent peaks are marked with asterisks. S15

Figure S16. 1H NMR spectra of 1c (A), 2b (B), and P1c2b (C) in CDCl3. The solvent peaks are marked with asterisks. S16

Figure S17. 1H NMR spectra of 1c (A), 2c (B), and P1c2c (C) in CDCl3. The solvent peaks are marked with asterisks. S17

Figure S18. 13C NMR spectra of 1a (A), 2a (B), and P1a2a (C) in CDCl3. The solvent peaks are marked with asterisks. S18
Figure S19. 13C NMR spectra of 1a (A), 2c (B), and P1a2c (C) in CDCl$_3$. The solvent peaks are marked with asterisks.

Figure S20. 13C NMR spectra of 1b (A), 2a (B), and P1b2a (C) in CDCl$_3$. The solvent peaks are marked with asterisks.

Figure S21. 13C NMR spectra of 1b (A), 2b (B), and P1b2b (C) in CDCl$_3$. The solvent peaks are marked with asterisks.

Figure S22. 13C NMR spectra of 1b (A), 2c (B), and P1b2c (C) in CDCl$_3$. The solvent peaks are marked with asterisks.

Figure S23. 13C NMR spectra of 1c (A), 2a (B), and P1c2a (C) in CDCl$_3$. The solvent peaks are marked with asterisks.

Figure S24. 13C NMR spectra of 1c (A), 2b (B), and P1c2b (C) in CDCl$_3$. The solvent peaks are marked with asterisks.

Figure S25. 13C NMR spectra of 1c (A), 2c (B), and P1c2c (C) in CDCl$_3$. The solvent peaks are marked with asterisks.

Figure S26. PL spectra of P1a2a (A), P1a2c (B) and P1c2a (C) in THF/water mixture with different water fraction (f_w, in volume percentage, vol%). Excitation concentration: 10 µM; λ_{ex} (P1a2a, P1a2c): 345 nm, λ_{ex} (P1c2a): 325 nm.

Figure S27. (A) UV absorption spectra of P1a2a, P1a2b, P1a2c and P1c2a in THF solution and rhodamine B in water solution. Concentration: 10 µM.

Reference.
Experimental section

Synthesis of 1,2-bis(4-ethynylphenyl)-1,2-diphenylethene (1a).

\[
\begin{align*}
6 & \xrightarrow{\text{CuI, Pd(PPh}_3)_2\text{Cl}_2, N_2, \text{Et}_3\text{N, THF, 80 }^\circ\text{C}} \rightarrow 8 \\
8 & \xrightarrow{\text{Zn, TiCl}_4, 0^\circ\text{C, reflux}} \rightarrow 1a
\end{align*}
\]

1a was synthesized according to our previously published procedures.1

Synthesis of bis(4-ethynylphenyl)methanone (1b).

\[
\begin{align*}
10 & \xrightarrow{\text{CuI, Pd(PPh}_3)_2\text{Cl}_2, N_2, \text{Et}_3\text{N, THF, 80 }^\circ\text{C}} \rightarrow 11 \\
11 & \xrightarrow{\text{KOH, THF/MeOH}} \rightarrow 1b
\end{align*}
\]

1b was synthesized according to our previously published procedures.1 1H NMR (CDCl\textsubscript{3}, 500 MHz), \(\delta\) (TMS, ppm): 7.77–7.73 (m, 4H), 7.62–7.58 (m, 4H), 3.26 (s, 2H). 13C NMR (CDCl\textsubscript{3}, 125 MHz), \(\delta\) (TMS, ppm): 195.02, 137.32, 132.39, 130.22, 126.81, 83.05, 80.27. FT-IR (KBr disk), \(\nu\) (cm-1): 3304, 3283, 2105, 1938, 1645, 1600, 1551, 1404, 1309, 1289, 1176, 1140, 1116, 1018, 971, 932, 863, 839, 766, 680, 658, 643, 628, 551, 520, 493.

Synthesis of 4-ethynl-N-(4-ethynylphenyl)-N-phenylaniline (1c)

\[
\begin{align*}
12 & \xrightarrow{\text{CuI, Pd(PPh}_3)_2\text{Cl}_2, N_2, \text{Et}_3\text{N, THF, 80 }^\circ\text{C}} \rightarrow 13 \\
13 & \xrightarrow{\text{KOH, THF/MeOH}} \rightarrow 1c
\end{align*}
\]

1c was synthesized according to our previously published procedures.2
Drug loading and release.

50 mg of P1a2b and 5 mg of rhodamine B were dissolved in 10 mL of DCM. Then, the solution was added into 200 mL of hexane dropwise under vigorous stirring. After standing for 1 h, the precipitates were filtered and washed with methanol to remove rhodamine B on the precipitates surface. The P1a2b loaded rhodamine B was obtained after drying in vacuum at 40 °C to a constant weight.

5 mg of P1a2b/rhodamine B complex was added into 300 mL of hydrochloric acid buffer solution and water at 37±0.5 °C, respectively and incubate for 2 h. Afterwards, 3 mL of supernate was analyzed by photoluminescence spectra.

Figure S1. (A) TGA thermograms and (B) DSC thermograms of polymers P1a2a–P1c2c. Td and Tg represent the temperature of 5% weights loss and the glass transition temperature, respectively.
Figure S2. FT-IR spectra of 1a (A), 2a (B) and P1a2a (C).

Figure S3. FT-IR spectra of 1a (A), 2c (B) and P1a2c (C).
Figure S4. FT-IR spectra of 1b (A), 2a (B) and P1b2a (C).

Figure S5. FT-IR spectra of 1b (A), 2b (B) and P1b2b (C).
Figure S6. FT-IR spectra of 1b (A), 2c (B) and P1b2c (C).

Figure S7. FT-IR spectra of 1c (A), 2a (B) and P1c2a (C).
Figure S8. FT-IR spectra of 1c (A), 2b (B) and P1c2b (C).

Figure S9. FT-IR spectra of 1c (A), 2c (B) and P1c2c (C).
Figure S10. 1H NMR spectra of 1a (A), 2a (B), and P1a2a (C) in CDCl$_3$. The solvent peaks are marked with asterisks.
Figure S11. 1H NMR spectra of 1a (A), 2c (B), and P1a2c (C) in CDCl$_3$. The solvent peaks are marked with asterisks.
Figure S12. 1H NMR spectra of 1b (A), 2a (B), and P1b2a (C) in CDCl$_3$. The solvent peaks are marked with asterisks.
Figure S13. 1H NMR spectra of 1b (A), 2b (B), and P1b2b (C) in CDCl$_3$. The solvent peaks are marked with asterisks.
Figure S14. 1H NMR spectra of 1b (A), 2c (B), and P1b2c (C) in CDCl$_3$. The solvent peaks are marked with asterisks.
Figure S15. 1H NMR spectra of $1c$ (A), $2a$ (B), and $P1c2a$ (C) in CDCl$_3$. The solvent peaks are marked with asterisks.
Figure S16. 1H NMR spectra of 1c (A), 2b (B), and P1c2b (C) in CDCl$_3$. The solvent peaks are marked with asterisks.
Figure S17. 1H NMR spectra of 1c (A), 2c (B), and P1c2c (C) in CDCl$_3$. The solvent peaks are marked with asterisks.
Figure S18. 13C NMR spectra of 1a (A), 2a (B), and P1a2a (C) in CDCl$_3$. The solvent peaks are marked with asterisks.
Figure S19. 13C NMR spectra of 1a (A), 2c (B), and P1a2c (C) in CDCl$_3$. The solvent peaks are marked with asterisks.
Figure S20. 13C NMR spectra of 1b (A), 2a (B), and P1b2a (C) in CDCl₃. The solvent peaks are marked with asterisks.
Figure S21. 13C NMR spectra of 1b (A), 2b (B), and P1b2b (C) in CDCl$_3$. The solvent peaks are marked with asterisks.
Figure S22. 13C NMR spectra of 1b (A), 2c (B), and P1b2c (C) in CDCl$_3$. The solvent peaks are marked with asterisks.
Figure S23. 13C NMR spectra of 1c (A), 2a (B), and P1c2a (C) in CDCl$_3$. The solvent peaks are marked with asterisks.
Figure S24. 13C NMR spectra of 1c (A), 2b (B), and P1c2b (C) in CDCl$_3$. The solvent peaks are marked with asterisks.
Figure S25. 13C NMR spectra of 1c (A), 2c (B), and P1c2c (C) in CDCl$_3$. The solvent peaks are marked with asterisks.
Figure S26. PL spectra of P1a2a (A), P1a2c (B) and P1c2a (C) in THF/water mixture with different water fraction (f_w, in volume percentage, vol%). Excitation concentration: 10 µM; λ_{ex} (P1a2a, P1a2c): 345 nm, λ_{ex} (P1c2a): 325 nm.
Figure S27. (A) UV absorption spectra of P1a2a, P1a2b, P1a2c and P1c2a in THF solution and rhodamine B in water solution. Concentration: 10 μM.

Reference
