Electronic Supplementary Information

Photoinduced Controlled Radical Polymerization of Methacrylates with Benzaldehyde Derivatives as Organic Catalysts

Wenchao Ma*, Xianhong Zhang*, Yuhong Ma*, Dong Chen, Li Wang, Changwen Zhao and Wantai Yang

aKey Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China

bState Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029, China

Correspondence to: Yuhong Ma (E-mail: mayh@mail.buct.edu.cn);
Wantai Yang (E-mail: yangwt@mail.buct.edu.cn)
Reaction setup

Fig. S1 The apparatus for the photo-induced reactions under 23 W CFL bulbs irradiation.

Fig. S2 Cyclic voltammogram of (a) \(p \)-anisaldehyde, (b) \(p \)-cyanobenzaldehyde, and (c) 2,4-dimethoxy benzaldehyde in DMF at room temperature, respectively. Scan rates: 100 mV s\(^{-1}\).

Fig. S3 Excitation spectra of \(p \)-anisaldehyde (20 mM), \(p \)-cyanobenzaldehyde (10 mM), and 2,4-dimethoxy benzaldehyde (10 mM) in DMF solution.
Recipes for homopolymerizations of methacrylic monomers:

Photopolymerization of MMA with \(p \)-anisaldehyde as an organocatalyst

The concentration of MMA in DMF (6.0 g) was set to be about 24 wt%. Specifically, the molar ratio of reagents \([\text{MMA}]/[\text{CF}_3(\text{CF}_2)_5\text{I}]/[\text{p-anisaldehyde}]/[\text{DMA}]\) was 100/2/-/5, 100/2/5/5, 100/2/10/5, 100/1/5/5, and 100/-/5/5, respectively.

Influence of different initiator on the polymerization of MMA

When using EBPA as the initiator, the concentration of MMA in DMF (6.0 g) was set to be about 24 wt%. Specifically, the molar ratio of reagents \([\text{MMA}]/[\text{EBPA}]/[\text{p-anisaldehyde}]/[\text{DMA}]\) was 100/2/5/- and 100/2/5/5. The recipe for initiator EBiB was slightly different from the EBPA. The molar ratio of reagents \([\text{MMA}]/[\text{EBiB}]/[\text{p-anisaldehyde}]/[\text{DMA}]\) was 100/2/5/5 and the concentration of MMA in DMF (6.0 g) was set to be about 25 wt%.

![Figure S4](image)

Fig. S4 (a) Monomer conversion (■, ●) and \(\ln([M]_0/[M]) \) (□, ○) versus time and (b) evolution of \(M_n \) and PDI with monomer conversion of the polymerization of MMA using \(p \)-cyanobenzaldehyde as the organic catalyst irradiated with 23 W CFL bulbs. The molar ratio of \([\text{MMA}]:[\text{EBPA}]:[\text{p-cyanobenzaldehyde}]:[\text{DMA}]\) was (A) 100:2:5:-, and (B) 100:2:5:5.

Photopolymerization of PEGMA with \(p \)-anisaldehyde as an organocatalyst

The concentration of PEGMA in DMF (5.0 g) was about 28wt%, and the ratio of \([\text{PEGMA}]/[\text{CF}_3(\text{CF}_2)_5\text{I}]/[\text{p-anisaldehyde}]/[\text{DMA}]\) was 42/2/5/5.
Fig. S5 (a) Monomer conversion (■) and ln([M]₀/[M]) (□) versus time and (b) evolution of M_n and PDI with conversion for the polymerization of PEGMA using p-anisaldehyde as the organic catalyst at ambient temperature irradiated with 23 W CFL. Reaction conducted with the molar ratio of [PEGMA]:[CF₃(CF₂)₅-I]:[p-anisaldehyde]:[DMA]=42:2:5:5.

Photopolymerization of MMA with p-cyanobenzaldehyde as an organocatalyst

In a typical run, a dry one-necked round-bottom flask was charged with MMA (2.06 g, 20 mmol), CF₃(CF₂)₅-I (0.0-0.18 g, 0-2 mol%), p-cyanobenzaldehyde (0.131-1.31 g, 1-10 mmol), DMA (0 or 0.121 g, 0 or 1mmol), and DMF (6.0 g). The reaction mixture was deoxygenated by three freeze-evacuate-thaw cycles and backfilled with argon.

Photopolymerization of BnMA with p-cyanobenzaldehyde as an organocatalyst

The process was the same as the general procedure of polymerization under 23 W CFL irradiation. The recipe was BnMA (2.05 g, 11 mmol), CF₃(CF₂)₅-I (0.085 g, 1.68 mol%), p-cyanobenzaldehyde (1.31 g, 10 mmol), DMA (0.072 g, 0.60 mmol), and DMF (5.0 g).

Fig. S6 (a) Monomer conversion (■) and ln([M]₀/[M]) (□) versus time and (b) evolution of M_n and PDI with conversion for the polymerization of BnMA using p-cyanobenzaldehyde as the organic catalyst at ambient temperature irradiated with 23 W CFL bulbs. Reaction was conducted with the molar ratio of [BnMA]:[CF₃(CF₂)₅-I]:[p-cyanobenzaldehyde]:[DMA]=
Photopolymerization of PEGMA with 2,4-dimethoxy benzaldehyde as an organocatalyst

The concentration of PEGMA in DMF (6.0 g) was about 24 wt%. Specifically, the molar ratio of reagents \([\text{PEGMA}] / [\text{CF}_3(\text{CF}_2)_5-\text{I}] / [\text{2,4-dimethoxy benzaldehyde}] / [\text{DMA}]\) was 24/1/-/5, 24/1/20/-, and 24/1/20/5, respectively.

Chain extensions using aldehydic molecule as organic catalyst

One-pot synthesis of PPEGMA with PPEGMA-\(I\) as a macroinitiator and p-anisaldehyde as an organocatalyst

The polymer PPEGMA was synthesized by one-pot process with sequential monomer addition. The molar ratio of \([\text{PEGMA}] / [\text{CF}_3(\text{CF}_2)_5-\text{I}] / [\text{p-anisaldehyde}] / [\text{DMA}]\) was 47/2/10/5 and the concentration of PEGMA in DMF (6 g) was about 26%. After 24 h of irradiation under 23 W CFL bulbs, a small portion of the reactant was sampled to determine the conversion of PEGMA (90.1%) and the Mn and PDI of the macroinitiator PPEGMA-I (Mn,GPC=10200; PDI=1.33). Then, 4.3156 g of deoxygenated PEGMA was introduced into the reactant. The reactant samples were taken using a syringe under a positive pressure of argon at different time intervals, and then purified by diethyl ether. The precipitates were dried at 40°C in vacuum.

One-pot synthesis of PPEGMA with PPEGMA-\(I\) as a macroinitiator and 2,4-dimethoxy benzaldehyde as an organocatalyst

The polymer PPEGMA was synthesized by one-pot process with sequential monomer addition. The molar ratio of \([\text{PEGMA}] / [\text{CF}_3(\text{CF}_2)_5-\text{I}] / [\text{2,4-dimethoxy benzaldehyde}] / [\text{DMA}]\) was 48/2/5/10 and the concentration of PEGMA in DMF (6 g) was about 26%. After 16 h of irradiation under 23 W CFL, a small portion of the reactant was sampled to determine the
conversion of PEGMA (82.3%) and the M_n and PDI of the macroinitiator PPEGMA-I ($M_{n,GPC}=15400$; PDI=1.23). Then, 2.2095 g of deoxygenated PEGMA was introduced into the reactant. The reactant samples were taken using a syringe under a positive pressure of argon at different time intervals, and then purified by diethyl ether. The precipitates were dried at 40°C in vacuum.

The synthesis of block copolymer with PPEGMA-I as a macroinitiator and p-anisaldehyde as an organocatalyst

The PPEGMA-I macroinitiator ($M_{n,GPC}=14200$ g mol$^{-1}$; PDI=1.39) was synthesized under the molar ratio of [PEGMA]/[CF$_3$(CF$_2$)$_5$I]/[p-anisaldehyde]/[DMA]=42/2/5/5 for 20.5 h. Then the PPEGMA-Br macroinitiator (0.770 g, 0.054 mmol), MMA (2.61 g, 26 mmol), p-anisaldehyde (0.142 g, 1.0 mmol), DMA (0.131 g, 1.1 mmol) and 6.0 g of DMF were added to a dry one-necked round-bottom Pyrex flask. The polymerization process was performed under the similar conditions as previously mentioned. The reaction mixture was irradiated with 23 W CFL bulbs for 100 h before the polymer was purified as mentioned above. Monomer conversion of the reaction was 74.8%.

![Image](image.png)

Fig. S7 1H NMR spectrum of PPEGMA-b-PMMA block copolymer obtained from the PPEGMA-I macroinitiator and p-anisaldehyde-based photopolymerization.

The synthesis of block copolymer with PBnMA-I as a macroinitiator and p-cyanobenzaldehyde as an organocatalyst

The PBnMA-I macroinitiator ($M_{n,GPC}=12500$ g mol$^{-1}$; PDI=1.85) was synthesized using the
initiator as described in the procedure for the homopolymerization of PBnMA with \(p \)-cyanobenzaldehyde as an organic catalyst. Then the PBnMA-Br macroinitiator (0.532 g, 0.042 mmol), MMA (2.03 g, 20 mmol), \(p \)-cyanobenzaldehyde (1.31 g, 10 mmol), DMA (0.121 g, 1.0 mmol), and 6.0 g of DMF were added to a dry one-necked round-bottom Pyrex flask. The polymerization process was performed under the similar conditions as previously mentioned. The reaction mixture was irradiated with 23 W CFL for 65 h before the polymer was purified as mentioned above. Monomer conversion of the reaction was 67.8%.

![Fig. S8 1H NMR spectrum of PBnMA-b-PMMA block copolymer obtained from the PBnMA-I macroinitiator and \(p \)-cyanobenzaldehyde-based photopolymerization.](image)

The synthesis of block copolymer with PPEGMA-I as a macroinitiator and 2,4-dimethoxy benzaldehyde as an organocatalyst

The PPEGMA-I macroinitiator (\(M_n,GPC=13000 \) g mol\(^{-1} \); PDI=1.18) was synthesized under the molar ratio of [PEGMA]/[CF\(_3\)(CF\(_2\)\(_5\))\(_2\)-I]/[2,4-dimethoxy benzaldehyde]/[DMA]=42/2/5/5 for 23 h. Then the PPEGMA-I macroinitiator (1.98 g), 0.516 g of BnMA, 0.660 g of 2,4-dimethoxy benzaldehyde, 0.087 g of DMA, and 6.0 g of DMF were added to a dry one-necked round-bottom Pyrex flask. The polymerization process was performed under the similar conditions as previously mentioned. The reaction mixture was irradiated with 23 W CFL bulbs for 23 h before the polymer was purified as mentioned above. Monomer conversion of the reaction was 33.9%.
Fig. S9 1H NMR spectrum of PPEGMA-b-PBnMA block copolymer obtained from the PPEGMA-I macroinitiator and 2,4-dimethoxy benzaldehyde-based photopolymerization.

The micellization of amphiphilic block copolymers

About 10 mg of PPEGMA-b-PMMA (or PPEGMA-b-PBnMA) was dissolved in 1 mL of THF. Then, the solution was dropwise added into 20 mL of deionized water with stirring in a beaker at 50°C for 1.5 h to allow venting of THF.

The self-assembled micellar aggregates based on the as-prepared amphiphilic block copolymers were characterized by SEM. As illustrated in Fig. S11, micellar aggregates were observed from the self-assembly of amphiphilic block copolymers of PPEGMA-b-PMMA and PPEGMA-b-PBnMA in aqueous medium. Typical DLS histogram of amphiphilic block copolymer micelle in deionized water is shown in Fig. S12, the effective diameter of PPEGMA-b-PMMA micelle was about 139 nm, while its polydispersity was 0.175. In addition, the effective diameter of PPEGMA-b-PBnMA micelle was about 192 nm, while its polydispersity was 0.233.
Fig. S10 Pictures of (A) PPEGMA-b-PMMA in THF, (B) PPEGMA-b-PMMA micelle, (C) PPEGMA-b-PBnMA in THF, and (D) PPEGMA-b-PBnMA micelle.

Fig. S11 SEM images of (a) PPEGMA-b-PMMA, and (b) PPEGMA-b-PBnMA block copolymers prepared from 0.5 mg mL$^{-1}$ aqueous solution.

Fig. S12 Typical DLS histogram of amphiphilic block copolymer micelle of (a) PPEGMA-b-PMMA, and (b) PPEGMA-b-PBnMA in deionized water, respectively.