Supporting Information

Main Chain Copolysiloxane with Terthiophene and Perylenediimide Units:
Synthesis, Characterization and Electrical Memory

Zhen Chen, Tingjie Zhang, Yi Zhang, Zhongjie Ren, * Jianming Zhang, Shouke Yan *

a State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China. E-mail: renzj@mail.buct.edu.cn, skyan@mail.buct.edu.cn.

b Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao, 266042, China.
Table of Contents

Figure S1. 1HNMR of 1,6,7,12-tetrachloro-N,N'-bis(ethoxyldimethylsilyl)propyl-perylene-3,4,9,10-tetracarboxylic acid diimide. ..S-3

Figure S2. 1HNMR of 1,6,7,12-tetrachloro-N,N'-bis(hydroxyldimethylsilyl)propyl-perylene-3,4,9,10-tetracarboxylic acid diimide ..S-3

Figure S3. 1HNMR of of 5,5''-bis(dimethylsilyl)-2,2',5',2''-terthiophene. ..S-4

Figure S4. MALDI-TOF MS of PBIClSi-alt-PTSi ..S-4

Figure S5. $J-V$ curves of the ITO/PBIClSi-alt-PTSi/Al memory. (a) positive sweep for the first time; (b) negative sweep for the first time ...S-4

Figure S6. The On and Off state current as a function of device area. ...S-5

Figure S7. $J-V$ characteristics of the memory device of ITO/PBIClSi-alt-PTSi/Au with different film thicknesses. (a) 18 nm; (b) 30 nm; (c) 80 nm; (d) 120 nm; (e) 180 nm. the memory device of ITO/PBIClSi-alt-PTSi/Au ...S-5

Figure S8. XPS spectra of PBIClSi-alt-PTSi film with applied 6 V bias and without bias: (a) C1s, (b) N1s, (c) Si2p, (d) S2p ..S-6

Figure S9. Configuration of PBIClSi-alt-PTSi with four units optimized by materials studio .. S-6
Figure S1. 1HNMR of 1,6,7,12-tetrachloro-N,N’-bis(ethoxydimethylsilyl)propyl-perylene-3,4,9,10-tetracarboxylic acid diimide.

Figure S2. 1HNMR of 1,6,7,12-tetrachloro-N,N’-bis(hydroxydimethylsilyl)propyl-perylene-3,4,9,10-tetracarboxylic acid diimide.
Figure S3. 1HNMR of 5,5’-bis(dimethylsilyl)-2,2’:5’,2’’-terthiophene.

Figure S4. MALDI-TOF MS of PBIClSi-alt-PTSi.

Figure S5. J-V curves of the ITO/ PBIClSi-alt-PTSi (50 nm) /Al memory. (a) positive sweep for the first time; (b) negative sweep for the first time.
Figure S6. The On and Off state current as a function of device area.

Figure S7. $J-V$ characteristics of the memory device of ITO/ PBICSi-alt-PTSi/Au with different film thicknesses. (a) 18 nm; (b) 30 nm; (c) 80 nm; (d) 120 nm; (e) 180 nm.
Figure S8. XPS spectra of PBIClSi-alt-PTSi film with applied 6 V bias and without bias: (a) C1s, (b) N1s, (c) Si2p, (d) S2p.

Figure S9. Configuration of PBIClSi-alt-PTSi with four units optimized by materials studio.