Electronic Supplementary Information (ESI)

Synthesis and characterization of two isomeric dithienopyrrole series
and the corresponding electropolymers

Sebastian Förtsch and Peter Bäuerle*
Institute of Organic Chemistry II and Advanced Materials,
University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
E-mail: peter.baeuerle@uni-ulm.de

Table of Contents:

1H and 13C NMR spectra of new monomers………………………………………………………… 2
Molecular orbital surfaces of DTPs………………………………………………………………… 9
Molecular orbital surfaces of iso-DTPs……………………………………………………………… 10
Electropolymerization of DTPs…………………………………………………………………… 11
Electropolymerization of iso-DTPs………………………………………………………………… 17
Spectroelectrochemical measurements of p(DTP)s………………………………………………… 23
Spectroelectrochemical measurements of p(iso-DTP)s…………………………………………… 24
Figure 1: 1H NMR spectrum of the Boc-substituted DTP 8 recorded in CDCl$_3$.

Figure 2: 13C NMR spectrum of the Boc-substituted DTP 8 recorded in CDCl$_3$.
Figure 3: 1H NMR spectrum of the unsubstituted iso-DTP 2 recorded in CD$_2$Cl$_2$.

Figure 4: 13C NMR spectrum of the unsubstituted iso-DTP 2 recorded in CD$_2$Cl$_2$.
Figure 5: 1H NMR spectrum of the hexyl-substituted iso-DTP 11 recorded in CD$_2$Cl$_2$.

Figure 6: 13C NMR spectrum of the hexyl-substituted iso-DTP 11 recorded in CD$_2$Cl$_2$.
Figure 7: 1H NMR spectrum of the 2-ethylhexyl-substituted iso-DTP 12 recorded in CD$_2$Cl$_2$.

Figure 8: 13C NMR spectrum of the 2-ethylhexyl-substituted iso-DTP 12 recorded in CD$_2$Cl$_2$.
Figure 9: 1H NMR spectrum of the 2-hexyldecyl-substituted iso-DTP 13 recorded in CD$_2$Cl$_2$.

Figure 10: 13C NMR spectrum of the 2-hexyldecyl-substituted iso-DTP 13 recorded in CD$_2$Cl$_2$.
Figure 11: 1H NMR spectrum of the phenyl-substituted iso-DTP 14 recorded in CD$_2$Cl$_2$.

Figure 12: 13C NMR spectrum of the phenyl-substituted iso-DTP 14 recorded in CD$_2$Cl$_2$.
Figure 13: 1H NMR spectrum of the benzoyl-substituted iso-DTP 15 recorded in CD$_2$Cl$_2$.

Figure 14: 13C NMR spectrum of the benzoyl-substituted iso-DTP 15 recorded in CD$_2$Cl$_2$.
Figure 15: Molecular orbital surfaces of DTPs with different residues R at the nitrogen.
Figure 16: Molecular orbital surfaces of iso-DTPs with different residues R at the nitrogen.
Figure 17: Electropolymerization of the DTP monomer 1 with a H residue at the nitrogen (top left) and the characterization of the obtained film using different scan rates (top right) and carrying out 30 scans at a rate of 100 mV/s (bottom left). Dependency of the anodic peak currents I_{PA} and the cathodic peak currents I_{PC} from the applied scan rate (bottom right).
Figure 18: Electropolymerization of the DTP monomer 5 with a 2-ethylhexyl residue at the nitrogen (top left) and the characterization of the obtained film using different scan rates (top right) and carrying out 30 scans at a rate of 100 mV/s (bottom left). Dependency of the anodic peak currents I_{PA} and the cathodic peak currents I_{PC} from the applied scan rate (bottom right).
Figure 19: Electropolymerization of the DTP monomer 6 with a 2-hexyldecyl residue at the nitrogen (top left) and the characterization of the obtained film using different scan rates (top right) and carrying out 30 scans at a rate of 100 mV/s (bottom left). Dependency of the anodic peak currents \(I_{PA} \) and the cathodic peak currents \(I_{PC} \) from the applied scan rate (bottom right).
Figure 20: Electropolymerization of the DTP monomer 7 with a phenyl residue at the nitrogen (top left) and the characterization of the obtained film using different scan rates (top right) and carrying out 30 scans at a rate of 100 mV/s (bottom left). Dependency of the anodic peak currents \(I_{PA} \) and the cathodic peak currents \(I_{PC} \) from the applied scan rate (bottom right).
Figure 21: Electropolymerization of the DTP monomer 8 with a Boc residue at the nitrogen (top left) and the characterization of the obtained film using different scan rates (top right) and carrying out 30 scans at a rate of 100 mV/s (bottom left). Dependency of the anodic peak currents I_{PA} and the cathodic peak currents I_{PC} from the applied scan rate (bottom right).
Figure 22: Electropolymerization of the DTP monomer 9 with a benzoyl residue at the nitrogen (top left) and the characterization of the obtained film using different scan rates (top right) and carrying out 30 scans at a rate of 100 mV/s (bottom left). Dependency of the anodic peak currents I_{PA} and the cathodic peak currents I_{PC} from the applied scan rate (bottom right).
Figure 23: Electropolymerization of the iso-DTP monomer 2 with a H residue at the nitrogen (top left) and the characterization of the obtained film using different scan rates (top right) and carrying out 30 scans at a rate of 100 mV/s (bottom left). Dependency of the anodic peak currents I_{PA} at 0.63 V and the cathodic peak currents I_{PC} from the applied scan rate (bottom right).
Figure 24: Electropolymerization of the iso-DTP monomer \textbf{12} with a 2-ethylhexyl residue at the nitrogen (top left) and the characterization of the obtained film using different scan rates (top right) and carrying out 30 scans at a rate of 100 mV/s (bottom left). Dependency of the anodic peak currents I_{PA} and the cathodic peak currents I_{PC} from the applied scan rate (bottom right).
Figure 25: Electropolymerization of the iso-DTP monomer 13 with a 2-hexyldecyl residue at the nitrogen (top left) and the characterization of the obtained film using different scan rates (top right) and carrying out 30 scans at a rate of 100 mV/s (bottom left). Dependency of the anodic peak currents I_{PA} at 0.53 V and the cathodic peak currents I_{PC} from the applied scan rate (bottom right).
Figure 26: Electropolymerization of the iso-DTP monomer 14 with a phenyl residue at the nitrogen (top left) and the characterization of the obtained film using different scan rates (top right) and carrying out 30 scans at a rate of 100 mV/s (bottom left). Dependency of the anodic peak currents I_{PA} and the cathodic peak currents I_{PC} from the applied scan rate (bottom right).
Figure 27: Electropolymerization of the iso-DTP monomer 10 with a Boc residue at the nitrogen (top left) and the characterization of the obtained film using different scan rates (top right) and carrying out 30 scans at a rate of 100 mV/s (bottom left). Dependency of the anodic peak currents \(I_{PA} \) and the cathodic peak currents \(I_{PC} \) from the applied scan rate (bottom right).
Figure 28: Electropolymerization of the iso-DTP monomer 15 with a benzoyl residue at the nitrogen (top left) and the characterization of the obtained film using different scan rates (top right) and carrying out 30 scans at a rate of 100 mV/s (bottom left). Dependency of the anodic peak currents I_{PA} and the cathodic peak currents I_{PC} from the applied scan rate (bottom right).
Figure 29: UV-Vis-NIR spectra obtained from spectr Electrochemical measurements of the p(DTP)s bearing H (P1, top left), 2-ethylhexyl (P5, top right), 2-hexyldecyl (P6, middle left), phenyl (P7, middle right), Boc (P8, bottom left), or benzoyl (P9, bottom right) residues at the nitrogen, respectively. Applied voltages are stated vs. Ag/AgCl. Black arrows show the changes starting at low potentials, blue arrows indicate the further changes at high potentials. Artefacts are marked with * in the spectra.
Figure 30: UV-Vis-NIR spectra obtained from spectroelectrochemical measurements of the p(iso-DTP)s bearing H (P2, top left), hexyl (P11, top right), 2-ethylhexyl (P12, middle left), 2-hexyldecyl (P13, middle right), phenyl (P14, bottom left), Boc (P10, bottom right), or benzoyl (P15, bottom) residues at the nitrogen, respectively. Applied voltages are stated vs. Ag/AgCl. Artefacts are marked with * in the spectra.