Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Conjugated phenothiazinyl Oxime esters as free radical photoinitiators

Xiaoyu Ma^{a,b}, Renquan Gu^b, Liujian Yu^b, Weixiang Han^b, Jie Li^b, Xiuyan Li^c and Tao Wang^{*a, b}

^a State Key Laboratory of Chemical Resource Engineering, College of Science, Beijing University of Chemical Technology, Beijing 100029, PR China

^b Department of Organic Chemistry, College of Science, Beijing University of Chemical

^c College of Materials Science and Engineering, Beijing Institute of Fashion Technology, Beijing, 100029, People's Republic of China

> *corresponding E-mail: <u>wangtwj2000@163.com</u> Telephone: 010-64435350

Fig. S1 Experimental UV-vis spectra calculated excited singlet states (blue) of Ph-PTZ-OXE

Fig. S2 Experimental UV-vis spectra calculated excited singlet states (blue) of TPA-PTZ-OXE

Fig. S3 Experimental UV-vis spectra calculated excited singlet states (blue) of CZ-PTZ-OXE

Fig. S4 Optimized geometry, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of Ph-PTZ-OXE, TPA-PTZ-OXE and CZ-PTZ-OXE at the B3LYP/6-31G* level.

Molecule	states	E (eV)	λ(nm)	\mathbf{f}_{os}	Main contribution	
Ph-PTZ-OXE	1	3.465	357.82	0.5258	HOMO →LUMO	0.842532
	2	4.2078	294.65	0.1266	HOMO →LUMO+1	0.453285
TPA-PTZ-	1	3.4026	364.38	1.0159	HOMO →LUMO	0.597543
OXE	2	3.8972	318.14	0.8781	HOMO →LUMO+1	0.418576
CZ-PTZ-OXE	1	3.4471	359.67	0.7637	HOMO →LUMO	0.693135
	2	4.1321	300.05	0.4954	HOMO →LUMO+1	0.390392

 Table S1 Data on the electron transition of oxime ester molecules

Fig. S5 Normalized fluorescence excitation and emission spectra of Ph-PTZ-OXE, TPA-PTZ-OXE and CZ-PTZ-OXE in THF solution (M=1 × 10⁻⁵ mol L⁻¹); (2) Normalized fluorescence emission spectra of oxime esters in THF solution (M=1 × 10⁻⁵ mol L⁻¹).

Figure S6. Photopolymerization profiles of TPGDA in the presence of OXE (TPGDA: 100 wt%; OXE: 0.2%,ONI:0.5%,1.0%1.5%,2.0%) under the laser diode at 405 nm

Figure S7. Photopolymerization profiles of TPGDA in the presence of OXE (TPGDA: 100 wt%; OXE: 0.2%,ONI:0.5%,1.0%1.5%,2.0%) under the laser diode at 455 nm.

Scheme S1. Initiation mechanism of oxime ester photoinitiator

Fig. S8. Fluorescence spectra of OXE in THF solution under the laser diode at 405 nm exposure at different irradiation times (M=1 × 10^{-5} mol L⁻¹): (a) Ph-PTZ-OXE, (b) TPA-PTZ-OXE, (c) CZ-

PTZ-OXE

Fig. S9. Photopolymerization profiles of TPGDA in the presence of OXE (TPGDA: 100 wt%; OXE: 0.2%,ONI:0.5%,1.0%1.5%,2.0%) under the laser diode at 405 nm

Fig. S10. Photopolymerization profiles of TPGDA in the presence of OXE (TPGDA: 100 wt%; OXE: 0.2%,ONI:0.5%,1.0%, 1.5%,2.0%) under the laser diode at 455 nm

Fig. S11 Fluorescence spectra of OXE/ION systems in THF solution under the laser diode at 405 nm exposure at different irradiation times ($M_{OXE}=1 \times 10^{-5}$ mol L⁻¹, $M_{ION}=1 \times 10^{-3}$ mol L⁻¹, m_{OXE} : $m_{ION}=1$: 10): Ph-PTZ-OXE/ION (a), TPA-PTZ-OXE/ION (b), CZ-PTZ-OXE/ION (c)

Scheme S2. Mechanism of OXE / ION photoinitiating system

Fig. S12. ESR spectra of the radicals generated in TPA-PTZ-OXE/ION in TPGDA

Fig. S13 Cyclic voltammogram curves of Ph-PTZ-OXE, TPA-PTZ-OXE and PTZ-PTZ-OXE in THF (Mdye = $1.01 \times 10-3 \text{ mol } \text{L}^{-1}$).

Fig. S14 Thermal gravimetricand curves of oxime esters

OXE	T _{initial} (°C)	T _{max} (°C)	$T_{finally}(^{\circ}C)$
Ph-PTZ-OXE	140	190	290
TPA-PTZ-OXE	120	190	300
CZ-PTZ-OXE	130	185	300

Table S2 Temperature of oxime esters mass loss