Modeling the formation and thermomechanical properties of polybenzoxazine thermosets

Shamil Saiev,a Leïla Bonnaud,b Philippe Dubois,a,c David Beljonnea and Roberto Lazzaronia,*

aLaboratory for Chemistry of Novel Materials, University of Mons – UMONS, Place du Parc 20, 7000 Mons (Belgium)
bMateria Nova R&D Center, Avenue Copernic 1, Parc Initialis, 7000 Mons (Belgium).
cLaboratory of Polymeric and Composite Materials, University of Mons – UMONS, Place du Parc 20, 7000 Mons (Belgium)

Supplementary Information

The T_g is very often estimated through the volume versus temperature curves with similar slope variation analysis. However the values obtained by the two methods differ by about 35 K; the density-temperature method adopted here provides results in better agreement with experiment, as also noticed by other groups.s1,s2 Another point to note is that the cooling rates used in simulations are multiple orders of magnitude higher than in the experimental measurements. A priori this should affect the values of calculated T_g. In similar works the error between simulation and experimental T_g values are often corrected by Wiliams-Landel-Ferry (WLF) equation which takes into account the cooling rate differences.s3 However, in this work the cooling rate does not seem to affect our results; all the studied structures can be considered at equilibrium after 300 ps; Fig. S1. This was verified by launching simulations for monomer-systems at different cooling time steps: 200 ps, 400 ps, 800 ps (see Figure S2). The results gave the same value of T_g for all simulation boxes.

Fig. S1 Density as a function of time for P-pPDA (conversion 0 % and 90 %) at 300 and 800 K.
Fig. S2 Density as a function of the temperature for different cooling rates of the P-pPDA monomer.

