Hetero-layered Hybrid Dendrimers with Optimized Sugar Head Groups for Enhancing Carbohydrate-Protein Interactions

Rahul S. Bagula, Maryam Hosseinia, Tze Chieh Shiaoa, Nadim K. Saadehb and René Roya*

aPharmaqam and Nanoqam, Department of Chemistry, University du Québec à Montréal, P.O. Box 8888, Succ. Centre-ville, Montréal, Québec H3C 3P8, CANADA.
E-mail: roy.rene@uqam.ca

bDepartment of Chemistry (Mass Spectrometry), MAASS Chemistry Building, 801, rue Sherbrooke Ouest, Centre-ville, Montréal, Québec, H3A OB8, CANADA. Fax: +1-514-398-3797; Tel: +1-514-398-6178.

\textbf{Content}

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1H, 13C NMR spectra and HRMS spectra</td>
</tr>
<tr>
<td>Original DLS curves for compounds 16, 19, 27 in the presence/absence of their corresponding lectins ConA and LecA from \textit{Pseudomonas aeruginosa}</td>
</tr>
</tbody>
</table>
Figure S1. 1H NMR spectrum of 2 (300 MHz, CDCl$_3$)

Figure S2. 13C NMR spectrum of 2 (75 MHz, CDCl$_3$)
Figure S3. ESI-MS spectrum of 2

Figure S4. 1H NMR spectrum of 3 (300 MHz, CDCl$_3$)
Figure S5. 13C NMR spectrum of 3 (150 MHz, CDCl$_3$)

Figure S6. ESI-MS spectrum of 3
Figure S7. 1H NMR spectrum of 4 (300 MHz, CDCl$_3$)

Figure S8. 13C NMR spectrum of 4 (75 MHz, CDCl$_3$)
Figure S9. ESI-MS spectrum of 4

Figure S10. 1H NMR spectrum of 5 (300 MHz, CDCl$_3$)
Figure S11. 13C NMR spectrum of 5 (75 MHz, CDCl$_3$)

Figure S12. ESI-MS spectrum of 5
Figure S13. 1H NMR spectrum of 7 (300 MHz, CDCl$_3$).

Figure S14. 13C NMR spectrum of 7 (75 MHz, CDCl$_3$).
Figure S15. ESI-MS spectrum of compound 7

Figure S16. 1H NMR spectrum of 9 (300 MHz, CDCl$_3$).
Figure S17. 13C NMR spectrum of 9 (75 MHz, CDCl$_3$).

Figure S18. ESI-MS spectrum of 9
Figure S19. 1H NMR spectrum of 10 (300 MHz, CDCl$_3$).

Figure S20. 13C NMR spectrum of 10 (75 MHz, CDCl$_3$)
Figure S21. ESI-MS spectrum of compound 10

Figure S22. 1H NMR spectrum of 11 (300 MHz, MeOH-d$_4$).
Figure S23. 13C NMR spectrum of 11 (75 MHz, MeOH-d$_4$).

Figure S24. 1H NMR Spectrum of 12 (300 MHz, CDCl$_3$)
Figure S25. 13C NMR spectrum of 12 (75 MHz, CDCl$_3$)

Figure S26. ESI-MS spectrum of compound 12
Figure S27. 1H NMR Spectrum of 14 (300 MHz, CDCl$_3$)

Figure S28. 13C NMR Spectrum of 14 (75 MHz, CDCl$_3$)
Figure S29. ESI-MS spectrum of compound 14

Figure S30. 1H NMR Spectrum of 15 (300 MHz, CDCl$_3$)
Figure S31. 13C NMR Spectrum of 15 (75MHz, CDCl$_3$)

Figure S32. HRMS spectrum of compound 15
Figure S33. 1H NMR Spectrum of 16 (300MHz, MeOH-d$_4$)

Figure S34. 13C NMR spectrum of 16 (75 MHz, MeOH-d$_4$)
Figure S35. HRMS of compound 16

Figure S36. 1H NMR spectrum of 18 (300 MHz, CDCl$_3$)
Figure S37. 13C NMR spectrum of 18 (75 MHz, CDCl$_3$)

Figure S38. 31P{1H} NMR spectrum of 18 (122 MHz, CDCl$_3$)
Figure S39. 1H NMR spectrum of 19 (300 MHz, MeOH-d$_4$)

Figure S40. 13C NMR spectrum of 19 (75 MHz, MeOH-d$_4$)
Figure S41. 31P{1H} NMR spectrum of 19 (122 MHz, MeOH-d$_4$)

Figure S42. MALDI-TOF spectrum of 19
Figure S43. 1H NMR spectrum of 20 (300 MHz, CDCl$_3$)

Figure S44. 13C NMR spectrum of 20 (75 MHz, CDCl$_3$)
Figure S45. HRMS spectrum of compound 20

Figure S46. 1H NMR of Dendron 23 (300 MHz, CDCl$_3$)
Figure S47. 13C NMR spectrum of Dendron 23 (75 MHz, CDCl$_3$)

Figure S48. HRMS spectrum of compound 23
Figure S49. 1H NMR of Dendron 24 (300 MHz, CDCl$_3$)

Figure S50. 13C NMR spectrum of dendron 24 (75 MHz, CDCl$_3$)
Figure S51. HRMS spectrum of compound 24
Figure S52. 1H NMR spectrum of dendron 25 (300 MHz, CDCl$_3$)

Figure S53. 13C NMR spectrum of dendron 25 (75 MHz, CDCl$_3$)
Figure S54. HRMS spectrum of compound 25
Figure S5. 1H NMR spectrum of second generation hybrid dendrimer 26 (600 MHz, CDCl$_3$)
Figure S56. 13C NMR spectrum of second generation hybrid dendrimer 26 (150 MHz, CDCl$_3$)

Figure S57. 31P1H-NMR spectrum of second generation hybrid dendrimer 26 (122 MHz, CDCl$_3$)
Figure S58. MALDI-TOF analysis of compound 26
Figure S59. 1H NMR spectrum of second generation hybrid dendrimer 27 (600 MHz, MeOH-d_4)

Figure S60. 13C NMR spectrum of second generation hybrid dendrimer 27 (150 MHz, MeOH-d_4)
Figure S61. $^{31}\text{P}^1\text{H}$ NMR spectrum of second generation hybrid dendrimer 27 (122 MHz, MeOH-d$_4$).
Figure S62. MALDI-TOF analysis of 27
Figure S63. DLS curves of kinetics of ConA in the presence of monomer 16 as function of time (curves for few initial points are shown).

Results
Figure S64. DLS curves of kinetics of LecA in the presence of monomer 16 as function of time (curves for few initial points are shown).

Results

<table>
<thead>
<tr>
<th></th>
<th>Size (d.nm)</th>
<th>% Number</th>
<th>St Dev (d.nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z-Average (d.nm)</td>
<td>291.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pdi</td>
<td>0.340</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>0.941</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Peak 1: 221.1 100.0 55.85
Peak 2: 5227 0.0 718.9
Peak 3: 0.000 0.0 0.000

Result quality: Refer to quality report

Figure S65. DLS curves of kinetics of ConA in the presence of glycodendrimer 19 as function of time (curves for few initial points are shown).
Results

Figure S66. DLS curves of kinetics of ConA in the presence of glycodendrimer 27 as a function of time (curves for few initial points are shown).

Figure S67. DLS curves of kinetics of LecA in the presence of glycodendrimer 19 as function of time (curves for few initial points are shown).
Results

<table>
<thead>
<tr>
<th>Size (d.nm)</th>
<th>% Number</th>
<th>St Dev (d.nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z-Average</td>
<td>1779</td>
<td></td>
</tr>
<tr>
<td>Peak 1:</td>
<td>1140</td>
<td>96.2</td>
</tr>
<tr>
<td>Pdl:</td>
<td>0.438</td>
<td>308.5</td>
</tr>
<tr>
<td>Peak 2:</td>
<td>5200</td>
<td>3.8</td>
</tr>
<tr>
<td>Intercept:</td>
<td>0.910</td>
<td>727.8</td>
</tr>
<tr>
<td>Peak 3:</td>
<td>0.000</td>
<td>0.0</td>
</tr>
<tr>
<td>Result quality:</td>
<td>Refer to quality report</td>
<td></td>
</tr>
</tbody>
</table>

Figure S68. DLS curves of kinetics of LecA in the presence of glycodendrimer 27 as function of time (curves for few initial points are shown).