Supplementary Information

(Co)Polymers Containing Boron Difluoride 3-Cyanoformazanate Complexes: Emission Enhancement via Random Copolymerization

Samantha Novoa and Joe B. Gilroy

Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, 1151 Richmond St. N., London, Ontario, Canada, N6A 5B7. Tel: +1-519-661-2111 ext. 81561; E-mail: joe.gilroy@uwo.ca
Fig. S1 Wavelength-dependent emission correction provided by Photon Technology International.

Fig. S2 1H NMR spectrum of monomer BF2N in CDCl$_3$.
Fig. S3 $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of monomer BF2N in CDCl$_3$.

Fig. S4 1H NMR spectrum of PDND in CDCl$_3$.
Fig. S5 1H NMR spectrum of PBF2N in CDCl$_3$.

Fig. S6 19F NMR (left) spectrum and 11B NMR (right) of PBF2N in CDCl$_3$.
Fig. S7 1H NMR spectrum of $(\text{PDND})_m-r-(\text{PBF2N})_n$ ($f_{\text{BF2N}} = 0.50$) in CDCl$_3$.

Fig. S8 1H NMR spectrum of $(\text{PDND})_m-r-(\text{PBF2N})_n$ ($f_{\text{BF2N}} = 0.15$) in CDCl$_3$.
Fig. S9 1H NMR spectrum of (PDND)$_m$-r-(PBF$_2$N)$_n$ ($f_{BF2N} = 0.08$) in CDCl$_3$.

Fig. S10 Representative 11B NMR and 19F NMR for random copolymers (PDND)$_m$-r-(PBF$_2$N)$_n$ and block copolymers (PDND)$_m$-b-(PBF$_2$N)$_n$ in CDCl$_3$.
Fig. S11 Relationship between number average molecular weight (M_n) of homopolymers PBF2N (a,b) and PDND (c,d) and reaction time.
Fig. S12 1H NMR spectrum of (PDND)$_m$-b-(PBF$_2$N)$_n$ ($f_{\text{BF}2\text{N}} = 0.48$) in CDCl$_3$.

Fig. S13 1H NMR spectrum of (PDND)$_m$-b-(PBF$_2$N)$_n$ ($f_{\text{BF}2\text{N}} = 0.13$) in CDCl$_3$.
Fig. S14 1H NMR spectrum of (PDND)$_{m}$-b-(PBF$_2$N)$_n$ ($f_{BF2N} = 0.07$) in CDCl$_3$.

Fig. S15 GPC traces recorded for random copolymers (PDND)$_{m}$-r-(PBF$_2$N)$_n$ (a), and block copolymers (PDND)$_{m}$-b-(PBF$_2$N)$_n$ (b) in DMF.
Fig. S16 TGA data recorded for homopolymers PBF2N and PDND, random copolymers (PDND)$_m$-r-(PBF2N)$_n$ (a), and block copolymers(PDND)$_m$-b-(PBF2N)$_n$ (b) under a N$_2$ atmosphere.

Fig. S17 UV-vis absorption spectra of monomer BF$_2$N, homopolymer PBF2N, and block copolymers (PDND)$_m$-b-(PBF2N)$_n$ recorded for 0.05 mg mL$^{-1}$ CH$_2$Cl$_2$ solutions.
Fig. S18 Cyclic voltammograms of 1 mM (calculated using an average molar mass for blocks and random copolymers) CH$_2$Cl$_2$ solutions of monomer BF$_2$N, homopolymer PBF$_2$N, random copolymer (PDND)$_m$-r-(PBF$_2$N)$_n$ ($f_{BF2N} = 0.50$), and block copolymer (PDND)$_m$-b-(PBF$_2$N)$_n$ ($f_{BF2N} = 0.48$) containing 0.1 M [nBu$_4$N][PF$_6$] as supporting electrolyte recorded at a scan rate of 250 mV s$^{-1}$. Voltammograms were referenced internally against the ferrocene/ferrocenium redox couple.