Supporting information for

Versatile multicompartment nanoparticles constructed with two thermo-responsive, pH-responsive and hydrolytic diblock copolymers

Shengli Chen†, Xueying Chang†, Pingchuan Sun† and Wangqing Zhang*†‡

†Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
‡Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.

1. Experimental Section

1.1 Synthesis of macro-RAFT agents

The macro-RAFT agent of PNASME_{153}-TTC was prepared by RAFT polymerization under [NASME]₀:[DDMAT]₀:[AIBN]₀ = 800:4:1 in 1,4-dioxane at 70 °C for 12 h. Into a Schlenk flask with a magnetic bar, NASME (1.57 g, 10.00 mmol), DDMAT (18.23 mg, 0.050 mmol), 1,3,5-trioxane (internal standard, 90.00 mg, 1.00 mmol), and AIBN (2.05 mg, 0.0125 mmol) dissolved in 1,4-diethylene dioxide (3.18 g, 3.06 mL) were added. The oxygen in flask content was excluded with high-purity argon at 0 °C, and then the polymerization was initiated at 70 °C under magnetically stirring. After 12 h, the polymerization was inhibited by rapid cooling upon immersion of the flask in iced water (-20 °C) and a monomer conversion of 76.5% was obtained. The monomer conversion was determined with ^1H NMR analysis by comparing the integral areas of the monomer protons of C=C-H at δ = 5.60-5.80 ppm with that of the 1,3,5-trioxane internal standard at δ = 5.10-5.20 ppm. The synthesized polymer was purified by three precipitation-filtration cycles in cold diethyl ether, and was dried under vacuum at room temperature overnight to
afford a pale yellow powder of PNASME\textsubscript{153}-TTC ($M_{n,th} = 24.3$ kg/mol, $M_{n,GPC} = 23.7$ kg/mol, $D = 1.22$).

A similar procedure of RAFT polymerization was also employed to prepare the macro-RAFT agent of P4VP\textsubscript{133}-TTC under [4VP]\textsubscript{0}:[DDMAT]\textsubscript{0}:[AIBN]\textsubscript{0} = 800:4:1 in ethanol at 70 °C. After 12h, a monomer conversion of 66.5% was determined by 1H NMR analysis. The synthesized polymer was purified by three precipitation-filtration cycles in cold diethyl ether, and then dried under vacuum at 25 °C overnight to afford a light pink powder of P4VP\textsubscript{133}-TTC ($M_{n,th} = 14.3$ kg/mol, $M_{n,GPC} = 13.2$ kg/mol, $D = 1.17$).

1.2 Synthesis of nanoassemblies formed by individual block copolymers

The PNASME\textsubscript{153-}b-PS or P4VP\textsubscript{133-}b-PS nano-assemblies were prepared by dispersion RAFT polymerization employing PNASME\textsubscript{153}-TTC or P4VP\textsubscript{133}-TTC as macro-RAFT agent under [St]\textsubscript{0}:[macro-RAFT]\textsubscript{0}:[AIBN]\textsubscript{0} = 900:3:1 similarly with the dispersion RAFT polymerization employing two macro-RAFT agents introduced in Section 2.3. The obtained diblock copolymers are PNASME\textsubscript{153-}b-PS\textsubscript{279} (T\textsubscript{153}S\textsubscript{279}, $M_{n,th} = 53.4$ kg/mol, $M_{n,GPC} = 50.2$ kg/mol, $D = 1.29$) and P4VP\textsubscript{133-}b-PS\textsubscript{292} (H\textsubscript{133}S\textsubscript{292}, $M_{n,th} = 44.6$ kg/mol, $M_{n,GPC} = 42.3$ kg/mol, $D = 1.21$).

2. Equations and Tables

\[
M_{n,th} = \frac{[\text{monomer}]_0 \times M_{\text{monomer}}}{[\text{RAFT}]_0} \times \text{Conversion} + M_{n,\text{RAFT/macro-RAFT}} \quad (\text{S1})
\]

where [monomer]\textsubscript{0} and [RAFT]\textsubscript{0} represent the concentration of the fed monomer and the RAFT agent, M_{monomer} is the molar mass of the monomer, $M_{n,\text{RAFT/macro-RAFT}}$ is the molar mass of RAFT/macro-RAFT agent, and the monomer Conversion is determined by 1H
NMR analysis by comparing the integral areas of the monomer protons of C=C-H at δ = 5.60-5.80 ppm with those of the 1,3,5-trioxane internal standard at δ = 5.10-5.20 ppm.

The $M_{n,\text{NMR}}$ of separated diblock copolymers, i.e., PNASME-b-PS (eq. S2) and P4VP-b-PS (eq. S2) was calculated with the ratio of two blocks by 1H NMR analysis (2.6-3.2 ppm corresponding to methyl of the PNASME block and 6.2-7.3 ppm corresponding to phenyl group of the PS block, and 8.0-8.4 ppm corresponding to pyridyl of the P4VP block).

$$M_{n,\text{NMR}} = DP_{\text{PS}} \times M_{\text{St}} + M_{\text{PNASME-TC}} = \frac{I_{2.6-3.2} \times \frac{1}{3}}{I_{8.0-8.4} \times \frac{1}{6}} \times DP_{\text{PNASME-TC}} \times M_{\text{St}} + M_{\text{PNASME-TC}} \quad (\text{S2})$$

$$M_{n,\text{NMR}} = DP_{\text{PS}} \times M_{\text{St}} + M_{\text{P4VP-TC}} = \frac{I_{6.2-7.3} \times \frac{1}{7}}{I_{8.0-8.4} \times \frac{1}{6}} \times DP_{\text{P4VP-TC}} \times M_{\text{St}} + M_{\text{P4VP-TC}} \quad (\text{S3})$$

Table S1. Summary of the synthesized MCBNs.

<table>
<thead>
<tr>
<th>Figures</th>
<th>MCBNs a</th>
<th>[H]o/[T]o:</th>
<th>Conv. b</th>
<th>$M_{n,\text{NMR}}$(kg/mol) c</th>
<th>$M_{n,\text{GPC}}$(kg/mol) / \bar{D} d</th>
</tr>
</thead>
<tbody>
<tr>
<td>4B/5B</td>
<td>T${153S260}$/$H{133S260}$</td>
<td>1800:3:3:1</td>
<td>86.7</td>
<td>50.6 43.9 43.1/1.37 45.2/1.25 40.7/1.21</td>
<td></td>
</tr>
<tr>
<td>4A</td>
<td>T${153S260}$/$H{133S260}$</td>
<td>1800:4:2:1</td>
<td>87.2</td>
<td>51.4 43.4 43.7/1.40 45.5/1.22 39.8/1.19</td>
<td></td>
</tr>
<tr>
<td>4C</td>
<td>T${153S264}$/$H{133S264}$</td>
<td>1800:2:4:1</td>
<td>88.3</td>
<td>50.3 44.5 44.2/1.42 46.6/1.24 41.7/1.28</td>
<td></td>
</tr>
<tr>
<td>5A</td>
<td>T${153S90}$/$H{133S90}$</td>
<td>600:3:3:1</td>
<td>90.1</td>
<td>33.6 23.8 27.4/1.36 30.9/1.18 21.2/1.15</td>
<td></td>
</tr>
<tr>
<td>5C</td>
<td>T${153S390}$/$H{133S390}$</td>
<td>3000:3:3:1</td>
<td>78.2</td>
<td>64.6 57.1 52.3/1.44 58.1/1.31 49.8/1.27</td>
<td></td>
</tr>
<tr>
<td>9A-B</td>
<td>T${153S260}$/$H{133S260}$</td>
<td>1800:3:3:1</td>
<td>86.7</td>
<td>48.5 43.9 42.7/1.41 44.1/1.20 39.8/1.17</td>
<td></td>
</tr>
</tbody>
</table>

a T, H, S and T’ denotes PNASME, P4VP, PS and PNAS block, respectively, b the monomer conversion was determined by 1H NMR analysis, c the molecular weight by NMR analysis according to eqs. S2 and S3, d the polymer molecular weight and \bar{D} (M_w/M_n) by GPC analysis, e TS denotes the separated PNASME-b-PS diblock copolymer or the hydrolytic PNAS-b-PS diblock copolymer, f HS denotes the separated P4VP-b-PS diblock copolymer. Note: the MCBNs of T$_{153S260}$/$H_{133S260}$ was prepared with hydrolyzing from T$_{153S260}$/$H_{133S260}$.

53
3. Supplementary Figures

Figure S1. TEM images of the non-stained nanoparticles of PNASME$_{153}$-b-PS$_{279}$ (T$_{153}$S$_{279}$, A), P4VP$_{133}$-b-PS$_{292}$ (H$_{133}$S$_{292}$, B) dispersed in ethanol/water (80/20 w/w) prepared via dispersion RAFT polymerization employing individual macro-RAFT agents and the PNASME$_{153}$-b-PS$_{260}$/P4VP$_{133}$-b-PS$_{260}$ nanoparticles (T$_{153}$S$_{260}$/H$_{133}$S$_{260}$, C) prepared employing two macro-RAFT agents.

Figure S2. Temperature-dependent transmittance of 0.01 wt% PNASME$_{153}$-TTC aqueous solution.
Figure S3. DSC thermograms of the PNASME₁₅₃/P₄VP₁₃₃ (1/1 w/w) blends (A), and PNAS₁₅₃-b-PS₂₆₀/P₄VP₁₃₃-b-PS₂₆₀ (B) obtained from hydrolysis of PNASME₁₅₃-b-PS₂₆₀/P₄VP₁₃₃-b-PS₂₆₀, the separated diblock copolymer of P₄VP₁₃₃-b-PS₂₆₀ (C) and PNAS₁₅₃-b-PS₂₆₀ (D). Note: The glass transition temperature (T_g) of PNASME₁₅₃ is about 102.1 °C and the T_g of P₄VP₁₃₃ is about 141.4 °C.

Figure S4. 1H NMR spectra of the PNASME₁₅₃-b-PS₂₆₀/P₄VP₁₃₃-b-PS₂₆₀ nanoparticles before hydrolysis (A) and the PNAS₁₅₃-b-PS₂₆₀/P₄VP₁₃₃-b-PS₂₆₀ nanoparticles after hydrolysis (B). Note: the signal of H₂O (3.33 ppm) in DMSO-d_6 was inhibited by water suppression experiment.
Figure S5. pH dependence of Zeta-potentials of the PNAS$_{153}$-b-PS$_{260}$/P4VP$_{133}$-b-PS$_{260}$ nanoparticles in aqueous solution at pH = 12.0, pH = 2.0 and pH = 6.5, respectively. Insets: the schematic structures of nanoparticles in aqueous solution are at pH = 2.0 and pH = 6.5, respectively.