Electronic Supplementary Information (ESI)

Novel conjugated polymers based on bis-dithieno[3,2-b;2',3'-d]pyrrole vinylene donor and diketopyrrolopyrrole acceptor: side chain engineering in organic field effect transistors

Fang-Ju Lin, a,b Song-Di Lin,a Chih-Hao Chin,b Wei-Tsung Chuang,*b and Chain-Shu Hsu*a

aDepartment of Applied Chemistry, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu, 30029, Taiwan
bNational Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan

*Corresponding author: E-mail: cshsu@mail.nutc.edu.tw (C. S. H.) and weitsung@nsrrc.org.tw (W. T. C.)

Table of Contents

1. Analytical Characterization of Materials. ..S2
 Fig. S1 1H NMR Spectra of B(C12-DTP)V ..S2
 Fig. S2 13C NMR Spectra of B(C12-DTP)V ..S3
 Fig. S3 Mass Spectra of B(C12-DTP)V ..S4

2. Characterization of PB(C12DTP)V-DTDPP-C12 and PB(C12 DTP)V-DTDPP-C12C8.S5
 2.1 Thermalgravimetric Analysis (TGA) ...S5
 Fig. S4 Thermogravimetric analysis ..S5
 2.2 Differential Scanning Calorimetry (DSC) ...S6
 Fig. S5 DSC thermograms ...S6
 2.3 AFM analysis ..S7
 Fig. S6 Tapping-mode AFM phase images ...S7
 Fig. S7 Tapping-mode AFM height images ...S8
 2.4 GIXD measurements ..S9
 Fig. S8 2D GIXD pattern ...S9
 Fig. S9 In-plane profiles and Gaussian fitting peaksS9
 2.5 OTFT device performances ..S10
 Table S1. Off-centre spin coated OTFT device performances for B(DTP)V-DTDPP polymers measured under nitrogen ...S10

S1

Fig. S1 1H NMR Spectra of B(C$_{12}$-DTP)V
Fig. S2 13C NMR Spectra of B(C$_{12}$-DTP)V
Fig. S3 Mass Spectra of B(C_{12}-DTP)V
2. Characterization of PB(C_{12}DTP)V-DTDPP-C_{12} and PB(C_{12} DTP)V-DTDPP-C_{12}C_{8}.

2.1 Thermalgravimetric Analysis (TGA)

![Thermalgravimetric Analysis](image)

Fig. S4 Thermogravimetric analysis of PB(C_{12}DTP)V-DTDPP-C_{12} and PB(C_{12}DTP)V-DTDPP-C_{12}C_{8} at a ramping rate of 10 °C min^{-1}.
2.2 Differential Scanning Calorimetry (DSC)

Fig. S5 DSC thermograms of PB(C_{12}DTP)V-DTDPP-C_{12} and PB(C_{12}DTP)V-DTDPP-C_{12}C_{8} polymers.
2.3 AFM analysis

Fig. S6 Tapping-mode AFM phase images of (a, b) PB(C_{12}DTP)V-DTDPP-C_{12} film after annealing at 220 °C and (c, d) PB(C_{12}DTP)V-DTDPP-C_{12}C_8 film after annealing at 180 °C. Thin film was fabricated by 1,2-dichlorobenzene with spin rate 2000 rpm.
Fig. S7 Tapping-mode AFM height images of (a, b) PB(C$_{12}$DTP)V-DTDPP-C$_{12}$ film after annealing at 220 °C and (c, d) PB(C$_{12}$DTP)V-DTDPP-C$_{12}$C$_8$ film after annealing at 180 °C. PB(C$_{12}$DTP)V-DTDPP-C$_{12}$ film was fabricated by (a) chlorobenzene with spin rate 2500 rpm ($R_t = 2.49$ nm), and (b) 1,2-dichlorobenzene with spin rate 1500 rpm ($R_t = 4.17$ nm). PB(C$_{12}$DTP)V-DTDPP-C$_{12}$C$_8$ film was fabricated by (c) chlorobenzene with spin rate 2500 rpm ($R_t = 1.64$ nm), and (d) 1,2-dichlorobenzene with spin rate 1500 rpm ($R_t = 2.66$ nm).
2.4 GIXD measurements

Fig. S8 2D GIXD pattern of (a) the OCSC PB(C_{12}DTP)V-DTDP-C_{12}, (b) the OCSC PB(C_{12}DTP)V-DTDP-C_{12}C_8, (c) the spin-coated PB(C_{12}DTP)V-DTDP-C_{12} and (d) the spin-coated PB(C_{12}DTP)V-DTDP-C_{12}C_8 films.

Fig. S9 In-plane profiles (dot) and Gaussian fitting peaks (color lines), (a) for the OCSC PB(C_{12}DTP)V-DTDP-C_{12}, and (b) for the OCSC PB(C_{12}DTP)V-DTDP-C_{12}C_8 films.
2.5 OTFT device performances

Table S1. Off-centre spin coated OTFT device performances for B(DTP)V-DTDPP polymers measured under nitrogen

<table>
<thead>
<tr>
<th>Polymers</th>
<th>Solvent</th>
<th>Spin rate (rpm)</th>
<th>Coating direction</th>
<th>T_a ($^\circ$C)a</th>
<th>$\mu_{h, adv}$ ($\mu_{h, max}$) (cm2V$^{-1}$s$^{-1}$)b</th>
<th>V_{th} (V)</th>
<th>I_{on}/I_{off}</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB(DTP)V-DTDPP-C$_{12}$</td>
<td>ODCB</td>
<td>2000</td>
<td>parallel</td>
<td>RT</td>
<td>0.073 (0.086)</td>
<td>-22</td>
<td>101-102</td>
</tr>
<tr>
<td></td>
<td>ODCB</td>
<td>2000</td>
<td>parallel</td>
<td>50</td>
<td>0.092 (0.10)</td>
<td>-24</td>
<td>101-102</td>
</tr>
<tr>
<td></td>
<td>ODCB</td>
<td>2000</td>
<td>parallel</td>
<td>240</td>
<td>0.008 (0.011)</td>
<td>-22</td>
<td>101-102</td>
</tr>
<tr>
<td></td>
<td>ODCB</td>
<td>1500</td>
<td>parallel</td>
<td>220</td>
<td>0.091 (0.16)</td>
<td>-12</td>
<td>101-102</td>
</tr>
<tr>
<td></td>
<td>CB</td>
<td>2500</td>
<td>parallel</td>
<td>220</td>
<td>0.13 (0.19)</td>
<td>-29</td>
<td>101-102</td>
</tr>
<tr>
<td></td>
<td>CB</td>
<td>2000</td>
<td>parallel</td>
<td>220</td>
<td>0.051 (0.064)</td>
<td>-15</td>
<td>101-102</td>
</tr>
<tr>
<td></td>
<td>ODCB</td>
<td>2000</td>
<td>parallel</td>
<td>RT</td>
<td>0.098 (0.11)</td>
<td>-18</td>
<td>101-102</td>
</tr>
<tr>
<td></td>
<td>ODCB</td>
<td>2000</td>
<td>parallel</td>
<td>50</td>
<td>0.13 (0.26)</td>
<td>-25</td>
<td>101-102</td>
</tr>
<tr>
<td></td>
<td>ODCB</td>
<td>1500</td>
<td>parallel</td>
<td>180</td>
<td>0.55 (0.78)</td>
<td>-21</td>
<td>101-102</td>
</tr>
<tr>
<td></td>
<td>CB</td>
<td>2500</td>
<td>parallel</td>
<td>180</td>
<td>0.18 (0.24)</td>
<td>-20</td>
<td>101-102</td>
</tr>
<tr>
<td></td>
<td>CB</td>
<td>2000</td>
<td>parallel</td>
<td>180</td>
<td>0.062 (0.083)</td>
<td>-32</td>
<td>101-102</td>
</tr>
</tbody>
</table>

aTa indicates annealing temperature. bAverage mobilities and maximum values of hole mobility are shown in parentheses (more than 20 devices were tested for each polymer). cAveraged value of 20 devices. ODCB and CB indicate 1,2-dichlorobenzene and chlorobenzene, respectively.