Supporting Information

Toward Alternating Copolymerization of Maleimide and Vinyl Acetate Driven by Hydrogen Bonding

Yanyan Zhou, Qingqing Liu, Zhengbiao Zhang*, Jian Zhu* and Xiulin Zhu

Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China. Tel/Fax: 86-512-6588-2787.

*To whom correspondence should be addressed. E-mail: zhangzhengbiao@suda.edu.cn; chemzhujian@suda.edu.cn

Scheme S1. Synthesis of N-substituted maleimide

Figure S1. 1H NMR spectra of monomer N-propylmaleimides(MI) in CDCl$_3$
Equation S1.

Normalized chain length \((i-1)-i = (\text{Conv}_{\text{total}} (i-1) + \text{Conv}_{\text{total}} (i)) / 2 \text{Conv}_{\text{max}};\)

Normalized chain length \((i) = \text{Conv}_{\text{total}} (i) / \text{Conv}_{\text{max}};\)

\[F_{\text{cum}, \text{VAc}} (i) = \left(\frac{200 \times \text{Conv. VAc}}{200 \times \text{Conv. MI} + 200 \times \text{Conv. VAc}}\right) \text{ (Conv.}_{\text{max}} \text{ equal to the maximum value of Conv.}_{\text{total}});\]

\[F_{\text{inst}, \text{VAc}} ((i-1)-i) = \frac{(\text{Conv.}_{\text{total}} (i) \times F_{\text{cum}, \text{VAc}} (i) - \text{Conv.}_{\text{total}} (i-1) \times F_{\text{cum}, \text{VAc}} (i-1))}{\left[(\text{Conv.}_{\text{total}} (i) \times F_{\text{cum}, \text{VAc}} (i)) - (\text{Conv.}_{\text{total}} (i) \times F_{\text{cum}, \text{MI}} (i) - \text{Conv.}_{\text{total}} (i-1) \times F_{\text{cum}, \text{MI}} (i-1)) \right]}.\]

Figure S2. Direct \(^1\text{H NMR analysis spectra of monomer conversion in CDCl}_3.\) The integral of the signal of proton (g) belong to HFIP in the 1H NMR was set to be 1.0, served as internal standard for the decrease of the integral of double bonds belong to each monomer. 0 h and 3 h was toward initial time and the third hour of the whole copolymerization. \(\text{Conv.}_{\text{MI}} = I_{6.7,0 \text{h}} - I_{6.7,3 \text{h}} / I_{6.7,0 \text{h}} \times 100\%;\) \(\text{Conv.}_{\text{VAc}} = I_{4.9,0 \text{h}} - I_{4.9,3 \text{h}} / I_{4.9,0 \text{h}} \times 100\%;\) The conversion of monomer at other times is similar to the calculation illustrated above.
Figure S3. Polymerization behavior of blue light-induced RAFT copolymerization of MI(M1) and VAc(M2) at 25 °C using HFIP as solvent. (a) Relationships of Mn and Mw/Mn with conversion in molar ratio of [VAc]₀/[MI]₀/[EXEP]₀ equals to 200/(200, 300, 133)/1; b-d) GPC traces of polymers obtained with molar ratio of [VAc]₀/[MI]₀ equals to 200/200 (b), 200/300(c), 300/200(d). The unit of all the molecular weight showing in the GPC traces is g mol⁻¹.

Figure S4. (a) Number-average molecular weights (Mn) and molecular weight distributions (Mw/Mn) of the copolymers from blue light-induced and Xanthate (EXEP) mediated RAFT copolymerization of MI (M) and VAc (V) at 25 °C using Dioxane as solvent. [VAc]₀/[MI]₀/[EXEP]₀ = 200/(200, 300, 133)/1. GPC traces: [VAc]₀/[MI]₀ = (b) 200/200, (c) 200/300, (d) 300/200. The unit of all the molecular weight showing
in the GPC traces is g mol$^{-1}$. Reaction conditions are the same as FigureS3.

Figure S5. First-order kinetic plots for RAFT copolymerization of MI and VAc at 60 °C using HFIP as solvent. Different feeding ratio toward each graph: (a): [VAc]$_0$ /[MI]$_0$ /[EXEP]$_0$ /[AIBN]$_0$ = 200/200/1/1; (b): [VAc]$_0$ /[MI]$_0$ /[EXEP]$_0$ /[AIBN]$_0$ = 200/300/1/1; (c): [VAc]$_0$ /[MI]$_0$ /[EXEP]$_0$ /[AIBN]$_0$ = 300/200/1/1.
Figure S6. First-order kinetic plots for RAFT copolymerization of MI and VAc at 60 °C using dioxane as solvent. Different feeding ratio toward each graph: (a): [VAc]₀/[MI]₀/[EXEP]₀/[AIBN]₀ = 200/200/1/1; (b): [VAc]₀/[MI]₀/[EXEP]₀/[AIBN]₀ = 200/300/1/1; (c): [VAc]₀/[MI]₀/[EXEP]₀/[AIBN]₀ = 300/200/1/1

Figure S7. (a) Number-average molecular weights (Mn) and molecular weight distributions (Mw/Mn) of the copolymers from thermal-induced and Xanthate (EXEP)-mediated RAFT copolymerization of MI (M) and VAc (V) at 60 °C using HFIP as solvent. [VAc]₀/[MI]₀/[EXEP]₀ = 200/(200, 300, 133)/1. GPC traces: [VAc]₀/[MI]₀ = (b) 200/200, (c) 200/300, (d) 300/200. The unit of all the molecular weight showing in the GPC traces graph is g mol⁻¹. Reaction conditions are the same as Figure S5.
Figure S8. (a) Number-average molecular weights (M_n) and molecular weight distributions (M_w/M_n) of the copolymers thermal-induced and Xanthate (EXEP) mediated RAFT copolymerization of MI (M) and VAc (V) at 60 °C respectively using Dioxane as solvent. $[\text{VAc}]_0/[\text{MI}]_0$/[EXEP]$_0$/[AIBN]$_0 = 200/(200, 300, 133)/1$. GPC traces: $[\text{VAc}]_0/[\text{MI}]_0 = (b) 200/20$, (c) 200/300, (d) 300/200. Reaction conditions are the same as in Figure S7.

Figure S9. 1H NMR spectra of the samples obtained from blue light-induced RAFT copolymerization of MI (M) and VAc (V) at 25 °C respectively in HFIP (a) and in Dioxane (b). The feeding ratio of the copolymerization: $[\text{VAc}]_0/[\text{MI}]_0 = 300/200$. Reaction conditions are the same as in Figure S3.
Figure S10. 1H NMR spectra of the samples obtained from blue light-induced RAFT copolymerization of MI (M) and VAc (V) at 25 °C respectively in HFIP (a) and in Dioxane (b). The feeding ratio of the copolymerization: $[\text{VAC}]_0/\text{[MI]}_0 = 200/300$.

Figure S11. Cumulative (F_{cum}) or instantaneous (F_{inst}) monomer contents of VAc in copolymers as a function of normalized chain length. The calculation formulas of F_{cum}, F_{inst} and normalized chain length are demonstrated in Eqn. S1. All the products were obtained from RAFT copolymerization of MI (M) and VAc (V) at 25 °C respectively using HFIP or 1, 4-dioxane as solvent. Feeding ratio is $[\text{VAC}]_0/\text{[MI]}_0/[\text{EXEP}]_0 = 600/200/2$.

Table S1. Data for the comparison with cumulative monomer contents of VAc in copolymers calculated from Elemental analysis ($F_{\text{cum}}(\text{EA})$) and 1H NMR ($F_{\text{cum}}(\text{conv.})$) with different molecular weight.

<table>
<thead>
<tr>
<th>Entry</th>
<th>solvent</th>
<th>M_nGPC</th>
<th>MI%</th>
<th>VAc%</th>
<th>MI%</th>
<th>VAc%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>HFIP</td>
<td>33200</td>
<td>49.6</td>
<td>50.4</td>
<td>50.0</td>
<td>50.0</td>
</tr>
<tr>
<td>2a</td>
<td>HFIP</td>
<td>19700</td>
<td>54.3</td>
<td>45.7</td>
<td>48.9</td>
<td>51.1</td>
</tr>
<tr>
<td>3a</td>
<td>Dioxane</td>
<td>11400</td>
<td>70.3</td>
<td>29.7</td>
<td>64.5</td>
<td>35.5</td>
</tr>
</tbody>
</table>
Dioxane 13300 72.7 27.3 68.2 31.8

a: All the copolymers were obtained from blue light-induced RAFT copolymerization of MI (M) and VAc (V) at 25 °C respectively in HFIP and in Dioxane. [VAC]₀/[MI]₀/[EXEP]₀ = 300/200/1/

Table S2. Data for calculating reactivity ratios of poly(MI-co-VAc) with HFIP as solvent.\(^a\)

<table>
<thead>
<tr>
<th>[MI]₀/[VAc]₀</th>
<th>Con-MI</th>
<th>Con-VAc</th>
<th>MₐMI</th>
<th>MₐVAc</th>
<th>mₐMI</th>
<th>mₐVAc</th>
<th>F</th>
<th>f</th>
<th>fF²</th>
<th>(f-1)/F</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/80</td>
<td>0.163</td>
<td>0.119</td>
<td>0.200</td>
<td>0.800</td>
<td>0.256</td>
<td>0.745</td>
<td>0.250</td>
<td>0.342</td>
<td>5.479</td>
<td>-2.630</td>
</tr>
<tr>
<td>30/70</td>
<td>0.085</td>
<td>0.069</td>
<td>0.300</td>
<td>0.700</td>
<td>0.346</td>
<td>0.654</td>
<td>0.429</td>
<td>0.523</td>
<td>2.874</td>
<td>-1.101</td>
</tr>
<tr>
<td>50/50</td>
<td>0.079</td>
<td>0.068</td>
<td>0.500</td>
<td>0.500</td>
<td>0.537</td>
<td>0.463</td>
<td>1.000</td>
<td>1.162</td>
<td>1.162</td>
<td>0.162</td>
</tr>
<tr>
<td>60/40</td>
<td>0.157</td>
<td>0.119</td>
<td>0.600</td>
<td>0.400</td>
<td>0.664</td>
<td>0.336</td>
<td>1.500</td>
<td>1.979</td>
<td>0.880</td>
<td>0.653</td>
</tr>
<tr>
<td>70/30</td>
<td>0.062</td>
<td>0.068</td>
<td>0.700</td>
<td>0.300</td>
<td>0.679</td>
<td>0.320</td>
<td>2.333</td>
<td>2.120</td>
<td>0.389</td>
<td>0.480</td>
</tr>
<tr>
<td>80/20</td>
<td>0.167</td>
<td>0.129</td>
<td>0.800</td>
<td>0.200</td>
<td>0.838</td>
<td>0.162</td>
<td>4.000</td>
<td>5.178</td>
<td>0.324</td>
<td>1.045</td>
</tr>
</tbody>
</table>

\(a\) Copolymers obtained from different monomer feed compositions([M]₀/[VAc]₀ = 20/200, 50/200, 100/20, 200/200, 200/50). mₐMI and mₐVAc refer to the MI and VAc composition in the copolymer, respectively. MₐMI and MₐVAc refer to the feed compositions of MI and VAc monomer, respectively. \(f = mₐMI/mₐVAc\), \(F = MₐMI/MₐVAc\). Reaction conditions are the same as Figure S3.

Figure S12. (a) Copolymer composition (m) as a function of the molar fraction of MI in the initial feed (M), and (b) plot of (f-1)/F Vs. fF² for MI (M) and VAc (V) copolymerization with least-squares straight line in RAFT copolymerization at 25 °C with HFIP as solvent.

Table S3. Data for calculating reactivity ratios of poly(MI-co-VAc) with Dioxane as solvent.\(^a\)

<table>
<thead>
<tr>
<th>[MI]₀/[VAc]₀</th>
<th>Conv. MI</th>
<th>Conv. VAc</th>
<th>MₐMI</th>
<th>MₐVAc</th>
<th>mₐMI</th>
<th>mₐVAc</th>
<th>F</th>
<th>f</th>
<th>fF²</th>
<th>(f-1)/F</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/80</td>
<td>0.163</td>
<td>0.119</td>
<td>0.200</td>
<td>0.800</td>
<td>0.256</td>
<td>0.745</td>
<td>0.250</td>
<td>0.342</td>
<td>5.479</td>
<td>-2.630</td>
</tr>
<tr>
<td>30/70</td>
<td>0.085</td>
<td>0.069</td>
<td>0.300</td>
<td>0.700</td>
<td>0.346</td>
<td>0.654</td>
<td>0.429</td>
<td>0.523</td>
<td>2.874</td>
<td>-1.101</td>
</tr>
<tr>
<td>50/50</td>
<td>0.079</td>
<td>0.068</td>
<td>0.500</td>
<td>0.500</td>
<td>0.537</td>
<td>0.463</td>
<td>1.000</td>
<td>1.162</td>
<td>1.162</td>
<td>0.162</td>
</tr>
<tr>
<td>60/40</td>
<td>0.157</td>
<td>0.119</td>
<td>0.600</td>
<td>0.400</td>
<td>0.664</td>
<td>0.336</td>
<td>1.500</td>
<td>1.979</td>
<td>0.880</td>
<td>0.653</td>
</tr>
<tr>
<td>70/30</td>
<td>0.062</td>
<td>0.068</td>
<td>0.700</td>
<td>0.300</td>
<td>0.679</td>
<td>0.320</td>
<td>2.333</td>
<td>2.120</td>
<td>0.389</td>
<td>0.480</td>
</tr>
<tr>
<td>80/20</td>
<td>0.167</td>
<td>0.129</td>
<td>0.800</td>
<td>0.200</td>
<td>0.838</td>
<td>0.162</td>
<td>4.000</td>
<td>5.178</td>
<td>0.324</td>
<td>1.045</td>
</tr>
<tr>
<td>50/200</td>
<td>0.035</td>
<td>0.022</td>
<td>0.193</td>
<td>0.807</td>
<td>0.796</td>
<td>0.204</td>
<td>0.239</td>
<td>3.894</td>
<td>68.077</td>
<td>17.100</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>100/200</td>
<td>0.029</td>
<td>0.017</td>
<td>0.341</td>
<td>0.659</td>
<td>0.801</td>
<td>0.199</td>
<td>0.517</td>
<td>4.025</td>
<td>15.032</td>
<td>5.846</td>
</tr>
<tr>
<td>300/200</td>
<td>0.065</td>
<td>0.074</td>
<td>0.600</td>
<td>0.400</td>
<td>0.748</td>
<td>0.252</td>
<td>1.500</td>
<td>2.963</td>
<td>1.317</td>
<td>1.308</td>
</tr>
<tr>
<td>200/100</td>
<td>0.107</td>
<td>0.093</td>
<td>0.661</td>
<td>0.339</td>
<td>0.851</td>
<td>0.149</td>
<td>1.950</td>
<td>5.703</td>
<td>1.500</td>
<td>1.812</td>
</tr>
<tr>
<td>200/50</td>
<td>0.080</td>
<td>0.085</td>
<td>0.800</td>
<td>0.200</td>
<td>0.830</td>
<td>0.170</td>
<td>4.000</td>
<td>4.883</td>
<td>0.305</td>
<td>0.971</td>
</tr>
<tr>
<td>200/20</td>
<td>0.092</td>
<td>0.078</td>
<td>0.966</td>
<td>0.034</td>
<td>0.902</td>
<td>0.098</td>
<td>28.412</td>
<td>9.246</td>
<td>0.011</td>
<td>0.290</td>
</tr>
</tbody>
</table>

a Copolymers obtained from different monomer feed compositions (\([\text{MI}]_0/\text{[VAc]}_0 = 50/200, 100/200, 300/200, 200/100, 200/50, 200/20\)). **m**\(_\text{MI}\) and **m**\(_\text{VAc}\) refer to the MI and VAc composition in the copolymer, respectively. **M**\(_\text{MI}\) and **M**\(_\text{VAc}\) refer to the feed compositions of MI and VAc monomer, respectively. \(f = \frac{\text{m}_\text{MI}}{\text{m}_\text{VAc}}\), \(F = \frac{\text{M}_\text{MI}}{\text{M}_\text{VAc}}\).
Figure S13. (a) Copolymer composition (m) as a function of the molar fraction of MI in the initial feed (M), and (b) plot of (f-1)/F Vs. f/F² for MI (M) and VAc (V) copolymerization with least-squares straight line in RAFT copolymerization at 25 °C with Dioxane as solvent.

Table S4. Data for calculating reactivity ratios of poly(MI-co-VAc) with HFIP as solvent at 60°C.a

<table>
<thead>
<tr>
<th>[MI]₀/[VAc]₀</th>
<th>Con.ₘI</th>
<th>Con.ₘVAc</th>
<th>ₘMI</th>
<th>ₘVAc</th>
<th>ₐF</th>
<th>ᵦ</th>
<th>ᵦF²</th>
<th>(ᵦ-1)/ᵦ</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/80</td>
<td>0.054</td>
<td>0.055</td>
<td>0.200</td>
<td>0.800</td>
<td>0.197</td>
<td>0.803</td>
<td>0.250</td>
<td>0.245</td>
</tr>
<tr>
<td>30/70</td>
<td>0.041</td>
<td>0.041</td>
<td>0.300</td>
<td>0.700</td>
<td>0.300</td>
<td>0.700</td>
<td>0.429</td>
<td>0.429</td>
</tr>
<tr>
<td>40/60</td>
<td>0.062</td>
<td>0.052</td>
<td>0.400</td>
<td>0.600</td>
<td>0.443</td>
<td>0.557</td>
<td>0.667</td>
<td>0.795</td>
</tr>
<tr>
<td>50/50</td>
<td>0.064</td>
<td>0.075</td>
<td>0.500</td>
<td>0.500</td>
<td>0.460</td>
<td>0.540</td>
<td>1.000</td>
<td>0.853</td>
</tr>
<tr>
<td>60/40</td>
<td>0.053</td>
<td>0.068</td>
<td>0.600</td>
<td>0.400</td>
<td>0.539</td>
<td>0.461</td>
<td>1.500</td>
<td>1.169</td>
</tr>
<tr>
<td>70/30</td>
<td>0.078</td>
<td>0.073</td>
<td>0.719</td>
<td>0.281</td>
<td>0.714</td>
<td>0.286</td>
<td>2.540</td>
<td>2.493</td>
</tr>
</tbody>
</table>

a Copolymers obtained from different monomer feed compositions([MI]₀ /[VAc]₀ = 20/80, 30/70, 40/60, 50/50, 60/40, 70/30).

ₘMI and ₘVAc refer to the MI and VAc composition in the copolymer, respectively. ₐM and ₐVAc refer to the feed compositions of MI and VAc monomer, respectively. ᵦ = ₘMI/ₘVAc, ᵦF = ₐM/ₐVAc.
Figure S14. (a) Copolymer composition (m) as a function of the molar fraction of MI in the initial feed (M), and (b) plot of $(f-1)/F$ Vs. f/F^2 for MI (M1) and VAc (M2) copolymerization with least-squares straight line in RAFT copolymerization at 60 °C with HFIP as solvent.

Table S5. Data for calculating reactivity ratios of poly(MI-co-VAc) with Dioxane as solvent at 60°C.\(^a\)

<table>
<thead>
<tr>
<th>$[\text{MI}]_0/[\text{VAc}]_0$</th>
<th>Con._{MI}</th>
<th>Con._{VAc}</th>
<th>M_{MI}</th>
<th>M_{VAc}</th>
<th>m_{MI}</th>
<th>m_{VAc}</th>
<th>F</th>
<th>$(f-1)/F$</th>
</tr>
</thead>
<tbody>
<tr>
<td>100/200</td>
<td>0.162</td>
<td>0.024</td>
<td>0.333</td>
<td>0.667</td>
<td>0.302</td>
<td>0.698</td>
<td>0.252</td>
<td>0.433</td>
</tr>
<tr>
<td>200/300</td>
<td>0.066</td>
<td>0.062</td>
<td>0.400</td>
<td>0.600</td>
<td>0.416</td>
<td>0.584</td>
<td>0.667</td>
<td>0.713</td>
</tr>
<tr>
<td>300/200</td>
<td>0.036</td>
<td>0.093</td>
<td>0.600</td>
<td>0.400</td>
<td>0.367</td>
<td>0.633</td>
<td>1.500</td>
<td>0.580</td>
</tr>
<tr>
<td>200/50</td>
<td>0.013</td>
<td>0.047</td>
<td>0.828</td>
<td>0.173</td>
<td>0.524</td>
<td>0.476</td>
<td>4.700</td>
<td>1.101</td>
</tr>
<tr>
<td>200/20</td>
<td>0.022</td>
<td>0.080</td>
<td>0.909</td>
<td>0.091</td>
<td>0.733</td>
<td>0.267</td>
<td>10.000</td>
<td>2.740</td>
</tr>
</tbody>
</table>

\(^a\) Copolymers obtained from different monomer feed compositions ($[\text{MI}]_0/[\text{VAc}]_0 = 100/200, 200/300, 300/200, 200/20$). m_{MI} and m_{VAc} refer to the MI and VAc composition in the copolymer, respectively. M_{MI} and M_{VAc} refer to the feed compositions of MI and VAc monomer, respectively. $f = m_{\text{MI}}/m_{\text{VAc}}$, $F = M_{\text{MI}}/M_{\text{VAc}}$.

The equation for the least-squares straight line in (b) is $y = -0.17785x + 0.29407$, with $R^2 = 0.96217$.

Figure S14. (a) Copolymer composition (m) as a function of the molar fraction of MI in the initial feed (M), and (b) plot of $(f-1)/F$ Vs. f/F^2 for MI (M1) and VAc (M2) copolymerization with least-squares straight line in RAFT copolymerization at 60 °C with HFIP as solvent.

Table S5. Data for calculating reactivity ratios of poly(MI-co-VAc) with Dioxane as solvent at 60°C.\(^a\)

<table>
<thead>
<tr>
<th>$[\text{MI}]_0/[\text{VAc}]_0$</th>
<th>Con._{MI}</th>
<th>Con._{VAc}</th>
<th>M_{MI}</th>
<th>M_{VAc}</th>
<th>m_{MI}</th>
<th>m_{VAc}</th>
<th>F</th>
<th>$(f-1)/F$</th>
</tr>
</thead>
<tbody>
<tr>
<td>100/200</td>
<td>0.162</td>
<td>0.024</td>
<td>0.333</td>
<td>0.667</td>
<td>0.302</td>
<td>0.698</td>
<td>0.252</td>
<td>0.433</td>
</tr>
<tr>
<td>200/300</td>
<td>0.066</td>
<td>0.062</td>
<td>0.400</td>
<td>0.600</td>
<td>0.416</td>
<td>0.584</td>
<td>0.667</td>
<td>0.713</td>
</tr>
<tr>
<td>300/200</td>
<td>0.036</td>
<td>0.093</td>
<td>0.600</td>
<td>0.400</td>
<td>0.367</td>
<td>0.633</td>
<td>1.500</td>
<td>0.580</td>
</tr>
<tr>
<td>200/50</td>
<td>0.013</td>
<td>0.047</td>
<td>0.828</td>
<td>0.173</td>
<td>0.524</td>
<td>0.476</td>
<td>4.700</td>
<td>1.101</td>
</tr>
<tr>
<td>200/20</td>
<td>0.022</td>
<td>0.080</td>
<td>0.909</td>
<td>0.091</td>
<td>0.733</td>
<td>0.267</td>
<td>10.000</td>
<td>2.740</td>
</tr>
</tbody>
</table>

\(^a\) Copolymers obtained from different monomer feed compositions ($[\text{MI}]_0/[\text{VAc}]_0 = 100/200, 200/300, 300/200, 200/20$). m_{MI} and m_{VAc} refer to the MI and VAc composition in the copolymer, respectively. M_{MI} and M_{VAc} refer to the feed compositions of MI and VAc monomer, respectively. $f = m_{\text{MI}}/m_{\text{VAc}}$, $F = M_{\text{MI}}/M_{\text{VAc}}$.
Figure S15. (a) Copolymer composition (m) as a function of the molar fraction of MI in the initial feed (M), and (b) plot of \((f-1)/F\) Vs. \(f/F^2\) for MI (M) and VAc (V) copolymerization with least-squares straight line in RAFT copolymerization at 60 °C with Dioxane as solvent. Reaction conditions are the same as Table S5.

Table S6. Data for calculating reactivity ratios of poly(MI-co-VAc) with HFIP as solvent.

<table>
<thead>
<tr>
<th>[MI]₀/[VAc]₀</th>
<th>Con. MI</th>
<th>Con. VAc</th>
<th>M_MI</th>
<th>M_VAc</th>
<th>m_MI</th>
<th>m_VAc</th>
<th>F</th>
<th>f</th>
<th>f/F²</th>
<th>(f-1)/F</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/200</td>
<td>0.157</td>
<td>0.026</td>
<td>0.091</td>
<td>0.909</td>
<td>0.376</td>
<td>0.623</td>
<td>0.100</td>
<td>0.603</td>
<td>60.300</td>
<td>-3.970</td>
</tr>
<tr>
<td>50/200</td>
<td>0.173</td>
<td>0.085</td>
<td>0.200</td>
<td>0.800</td>
<td>0.338</td>
<td>0.662</td>
<td>0.250</td>
<td>0.511</td>
<td>8.192</td>
<td>-1.956</td>
</tr>
<tr>
<td>100/200</td>
<td>0.079</td>
<td>0.061</td>
<td>0.333</td>
<td>0.667</td>
<td>0.395</td>
<td>0.605</td>
<td>0.500</td>
<td>0.653</td>
<td>2.612</td>
<td>-0.694</td>
</tr>
<tr>
<td>200/200</td>
<td>0.128</td>
<td>0.125</td>
<td>0.500</td>
<td>0.500</td>
<td>0.505</td>
<td>0.495</td>
<td>1.000</td>
<td>1.020</td>
<td>1.020</td>
<td>0.02</td>
</tr>
<tr>
<td>200/50</td>
<td>0.026</td>
<td>0.059</td>
<td>0.800</td>
<td>0.200</td>
<td>0.636</td>
<td>0.364</td>
<td>4.000</td>
<td>1.747</td>
<td>0.109</td>
<td>0.186</td>
</tr>
</tbody>
</table>

Copolymers obtained from different monomer feed compositions([MI]₀ /[VAc]₀ = 20/200, 50/200, 100/200, 200/200, 200/50).

\(m_{MI}\) and \(m_{VAc}\) refer to the MI and VAc composition in the copolymer, respectively. \(M_{MI}\) and \(M_{VAc}\) refer to the feed compositions of MI and VAc monomer, respectively. \(f = m_{MI}/m_{VAc}\), \(F = M_{MI}/M_{VAc}\). Radical copolymerization of MI and VAc at 60 °C with HFIP as solvent and using AIBN as initiator.
Figure S16. Plot of (f-1)/F Vs. f/F² for MI and VAc copolymerization with least-squares straight line in radical copolymerization at 60 °C with HFIP as solvent. [MI]₀/[VAc]₀ = 50/200, 100/20, 200/200, 300/200, 200/20.

Table S7. Data for calculating reactivity ratios of poly(MI-co-VAc) with Dioxane as solvent.

<table>
<thead>
<tr>
<th>[MI]₀/[VAc]₀</th>
<th>Con. MI</th>
<th>Con. VA</th>
<th>MMI</th>
<th>MVAc</th>
<th>rMI</th>
<th>rVA</th>
<th>F</th>
<th>f</th>
<th>f/F²</th>
<th>(f-1)/F</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/80</td>
<td>0.131</td>
<td>0.052</td>
<td>0.200</td>
<td>0.800</td>
<td>0.384</td>
<td>0.615</td>
<td>0.250</td>
<td>0.624</td>
<td>9.984</td>
<td>-1.504</td>
</tr>
<tr>
<td>40/60</td>
<td>0.225</td>
<td>0.172</td>
<td>0.366</td>
<td>0.634</td>
<td>0.430</td>
<td>0.570</td>
<td>0.667</td>
<td>0.755</td>
<td>1.697</td>
<td>-0.367</td>
</tr>
<tr>
<td>50/50</td>
<td>0.142</td>
<td>0.149</td>
<td>0.500</td>
<td>0.500</td>
<td>0.488</td>
<td>0.512</td>
<td>1.000</td>
<td>0.953</td>
<td>0.953</td>
<td>-0.047</td>
</tr>
<tr>
<td>70/30</td>
<td>0.020</td>
<td>0.035</td>
<td>0.700</td>
<td>0.300</td>
<td>0.571</td>
<td>0.429</td>
<td>2.333</td>
<td>1.333</td>
<td>0.246</td>
<td>0.143</td>
</tr>
<tr>
<td>80/20</td>
<td>0.031</td>
<td>0.062</td>
<td>0.800</td>
<td>0.200</td>
<td>0.667</td>
<td>0.333</td>
<td>4.000</td>
<td>2.000</td>
<td>0.125</td>
<td>0.250</td>
</tr>
<tr>
<td>90/10</td>
<td>0.044</td>
<td>0.051</td>
<td>0.900</td>
<td>0.100</td>
<td>0.886</td>
<td>0.114</td>
<td>9.000</td>
<td>7.765</td>
<td>0.096</td>
<td>0.751</td>
</tr>
</tbody>
</table>

Copolymers obtained from different monomer feed compositions ([MI]₀/[VAc]₀ = 20/80, 40/60, 50/50, 70/30, 80/20, 90/10). MMI and MVAc refer to the MI and VAc composition in the copolymer, respectively. M_MI and M_VAc refer to the feed compositions of MI and VAc monomer, respectively. f = m_MI/mLVA, F = M_MI/M_VAc.

Radical copolymerization of MI and VAc at 60 °C Radical copolymerization of MI and VAc at 60 °C with dioxane as solvent and using AIBN as initiator.
Figure S17. Plot of (f-1)/F Vs. f/F² for MI and VAc copolymerization with least-squares straight line in radical copolymerization at 60 °C with dioxane as solvent. [MI]₀/[VAc]₀ = 20/80, 40/60, 50/50, 70/30, 80/20, 90/10

Figure S18. The Mulliken charges and the hydrogen bonding interaction of the VAc-HFIP (a) and MI-HFIP (b) at the level of B3LYP/6-311++G (d,p).
Figure S19. DSC thermograms of copolymers with different compositions (mol% of VAc and MI units) with HFIP and Dioxane as solvent, respectively, with a heating/cooling rate of 20°C/min from 0 to 200 °C under a continuous nitrogen flow. The feeding ratio of the copolymerization: (a) [VAC]₀/[MI]₀ = 300/200; (b) [VAC]₀/[MI]₀ = 200/300. Reaction conditions are the same as in Figure S3(b),(c).