Controlled ring-opening polymerisation of cyclic phosphates, phosphonates and phosphoramidates catalysed by hererooleptic BHT-alkoxy magnesium complexes

I. E. Nifant'ev,a,b * A. V. Shlyakhtin,a V. V. Bagrov,a P. D. Komarov,a M. A. Kosarev,a A. N. Tavtorkin,a,b M. E. Minyaev,b V. A. Roznyatovsky,a and P. V. Ivchenko,a,b

a) M.V. Lomonosov Moscow State University, Department of Chemistry, Moscow, Russian Federation.
b) A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation.

* Corresponding author. E-mail: inif@org.chem.msu.ru; ilnif@yahoo.com.

SUPPORTING INFORMATION

S1. General experimental remarks 2–3
S2. Preparation of BHT-derived magnesium complexes 4–5
S3. Synthesis and characterization of monomers 1-6 6–20
S4. Homopolymer synthesis and characterization 21–39
S1. General experimental remarks

All of the synthetic and polymerization experiments were conducted under an argon atmosphere. Toluene, diethyl ether, THF and triethylamine were refluxed with Na/benzophenone/dibenzo-18-crown-6 and distilled prior to use. Heptane was refluxed for 10 h over sodium and then distilled and stored under an argon atmosphere over sodium. Methanol was refluxed and distilled over magnesium methoxide. 2,6-Di-tert-butyl-4-methylphenol (BHT, Sigma-Aldrich, ≥99%), di-n-butylmagnesium (Sigma-Aldrich, 1.0 M solution in heptane), trimethylaluminium (Sigma-Aldrich, 1.0 M solution in toluene), diethylzinc (Sigma-Aldrich, 1.0 M solution in toluene), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU, Sigma-Aldrich, 99%) and acetic acid (Acros, ≥99.9%) were used as purchased. Benzyl alcohol (Acros, 99%) was distilled over BaO and stored under argon. Mg(BHT)_2(THF)_2 (Mg2), Ca(BHT)_2(THF)_3 (Ca1), EtZn(BHT)(THF)_2 (Zn1), Me_2Al(BHT)(THF)_2 (Al1), 1,5,7-triazabicyclo[4.4.0]undec-5-ene (TBD), N-[3,5-bis(trifluoromethyl)phenyl]-N’-cyclohexyl thiourea (TU) were prepared according to the described methods.

CDCl₃ (Cambridge Isotope Laboratories, Inc., D 99.8 atom %) was used as purchased. THF-d₈ (Aldrich, ≥99.5 atom % ^2H) and toluene-d₈ (Aldrich, ≥99.6 atom % ^2H) were stored over sodium/benzophenone and condensed into NMR tubes using the Schlenk technique. The ¹H and ¹³C NMR spectra were recorded on a Bruker AVANCE 400 spectrometer (400 MHz) at 20 °C. The ¹H homodecoupling spectra were recorded on an Agilent 400-MR spectrometer (400 MHz) at 20 °C in CDCl₃. The chemical shifts are reported in ppm relative to the solvent residual peaks.

GPC measurements of the polymers were performed in DMF (containing 0.1 g/L lithium bromide as additive) with a flow rate of 1 mL/min at 50 °C using an Agilent PL-GPC 220 integrated instrument with an autosampler and RI-detector. Calibration was achieved using poly(ethylene glycol) standards.

Elemental analysis (C, H) was performed on a Perkin Elmer Series II CHNS/O Analyser 2400.

References

S2. Preparation of BHT-derived magnesium complexes

S2.1. Syntesis of BuMg(BHT)(THF)2 (Mg1)

BHT (0.22 g, 1 mmol) was placed into an ampoule filled with argon. Heptane (1 mL) was injected with a syringe through a septum. Upon ionol dissolution, the ampoule was cooled to -10 °C. Dibutylmagnesium (1 mL of 1 M in heptane, 1 mmol) was transferred into the ampoule while stirring the solution. After warming to room temperature and stirring for 4 h, the as-formed crystals were washed with 2 mL of heptane and dried under vacuum. The obtained solid was dissolved in THF (2 mL). The resulting solution was evaporated under reduced pressure to a residual volume of 0.5 mL. The as-formed crystalline precipitate was filtered, washed with 1 mL of a 1:1 (v/v) THF/heptane mixture, and dried under vacuum. The yield was 0.38 g (86 %).

1H NMR (400 MHz, THF-d8, 20 °C): δ 6.72 (s, 2H, CH Ar); 2.09 (s, 3H, Me Ar); 1.51 (m, 2H, CH₂CH₂CH₂); 1.36 (s, 18H, tertBu); 1.24 (sext, $^3J = 7.3$ Hz, 2H, CH₂CH₂); 0.84 (t, $^3J = 7.3$ Hz, 3H, CH₃); 0.49 (m, 2H, C₂H₄Mg).

13C{¹H} NMR (101 MHz, THF-d8, 20 °C): δ 161.86 (C-O(Ar)); 137.35 (Ar); 125.36 (Ar); 119.58 (Ar); 35.43 ((CH₃)₃C); 33.86 (CH₂CH₂); 32.87 (CH₂CH₂); 31.02 ((CH₃)C); 21.63 (MeAr); 14.50 (Me(Bu)); 8.52 (CH₂Mg).

Fig. S1. 1H NMR spectrum (400 MHz, THF-d8, 20 °C) of BuMg(BHT)(THF)₂ (Mg1)
S2.2. Synthesis of [(BHT)Mg(μ-PhCH₂O)(THF)]₂ (Mg₃)

A solution Bu₂Mg in heptane (20 mL, 1 M, 20 mmol) was dropwise added to a stirred solution of BHT (4.410 g, 20 mmol) in a toluene/THF mixture (8 mL and 4.5 mL, correspondingly). After 40 min, a solution of PhCH₂OH (2.168 g, 20 mmol) in THF (1 mL) was dropwise added to the stirred reaction mixture. The formed solution was then stirred for 3 min. After 5 min, crystals of 4 started to form. Two hours later, the mother liquor was decanted. Some of formed crystals were taken for the X-ray diffraction studies. The remaining crystals were washed with toluene (2×5 mL) and hexane (2×5 mL), dried under dynamic vacuum till the constant mass. The yield was 6.785 g (8.02 mmol, 80%).

Anal. found (calcd for C₂₆H₃₈MgO₃): C, 73.96 (73.85%); H, 9.22 (9.06%).

¹H NMR (400 MHz, THF-d₈, 20 °C): δ 7.37 (d, 3 J = 7.7 Hz, 2H, o-H₈); 7.20 (t, 3 J = 7.6 Hz, 2H, m-H₈); 7.13 (t, 3 J = 7.6 Hz, 1H, p-H₈); 6.77 (s, 2H, m-H₈); 5.02 (s, 2H, O-CH₃); 2.13 (s, 3H, -C₆H₃); 1.80-1.75 (m, 4H, CH₂C₆H₄); 1.37 (s, 18H, 2,6-tBu₂BHT).

¹³C{¹H} NMR (101 MHz, THF-d₈, 20 °C): δ 161.4 (ipso-C-O₂H₈); 145.8 (ipso-C-CH₂BnO); 137.7 (o-C-¹BuBHT); 129.1 (o-C₆BnO); 128.1 (m-C₆BHT); 127.6 (p-C₆BnO); 125.7 (m-C₆BnO); 121.0 (p-C₆MeBHT); 68.4 (CH₂CH₂O₈); 66.6 (Ph-CH₂O₂H₈); 35.7 (-C₆Me₃BHT); 31.4 (-C(C₆)₃BHT); 26.5 (CH₂CH₂O₈); 21.6 (p-CH₃BHT).

Fig. S2. ¹H NMR spectrum (400 MHz, THF-d₈, 20 °C) of [(μ-PhCH₂O)Mg(BHT)(THF)]₂ (Mg₃)
S3. Synthesis and characterization of monomers 1-6

S3.1. Synthesis of 2-methoxy-2-oxo-1,3,2-dioxaphospholane 1 (methyl ethylene phosphate, MeOEP)

2-Chloro-1,3,2-dioxaphospholane (A).

The compound was synthesized via a modified literature protocol.1 A flame-dried 500 mL three-neck flask, equipped with a dropping funnel and a reflux condenser with a calcium chloride tube, was charged with phosphorous trichloride (137.33 g, 1 mol) in dry dichloromethane (150 mL). Ethylene glycol (62.07 g, 1 mol) was added dropwise to the stirring solution. Argon was bubbled through the solution to remove hydrogen chloride. After 2 h, the solvent was removed and the residue was purified twice by distillation under reduced pressure. The yield was 80.7 g (64%). B. p. 83-84 °C (79-81 Torr), colorless liquid.

1H NMR (400 MHz, CDCl$_3$, 20 °C): δ 4.44 (m, 2H, OC$_2$H$_2$C$_2$H$_2$O); 4.22 (m, 2H, OC$_2$H$_2$C$_2$H$_2$O). 31P{H} NMR (162 MHz, CDCl$_3$, 20 °C): δ 167.61.

2-Chloro-2-oxo-1,3,2-dioxaphospholane (B).

The compound was synthesized according to a modified literature procedure.1 A flame-dried 500 mL three-neck flask, equipped with a reflux condenser, was charged with 2-chloro-1,3,2-dioxaphospholane (50 g, 0.4 mol) dissolved in benzene (200 mL) and heated to 50 °C. A stream of oxygen was passed through the solution for 12 hours. The solvent was removed in vacuo and the residue was purified by distillation under reduced pressure. The yield was 40.1 g (71.3%). B. p. 79-80 °C (0.4 Torr), colorless liquid.

1H NMR (400 MHz, CDCl$_3$, 20 °C): δ 4.63-4.46 (m, 4H, OC$_2$H$_2$C$_2$H$_2$O). 13C{H} NMR (101 MHz, CDCl$_3$, 20 °C): δ 66.7 (s). 31P{H} NMR (162 MHz, CDCl$_3$, 20 °C): δ 22.81.

2-Methoxy-2-oxo-1,3,2-dioxaphospholane 1 (MeOEP).

A flame-dried 1000 mL three-neck flask, equipped with a dropping funnel, was charged with dry methanol (4.8 g, 0.15 mol), dry triethylamine (21 mL, 0.15 mol) and dry THF (300 mL). A solution of 2-chloro-2-oxo-1,3,2-dioxaphospholane (21.3 g, 0.15 mol) in dry THF (60 mL) was added dropwise under stirring at -20 °C. After 12 h of stirring at -20 °C, triethylammonium chloride was filtered off, the filtrate was concentrated in vacuo. The residue was purified by distillation under reduced pressure. The yield was 8.95 g (45%). B. p. 92-93°C (0.4 Torr), colorless liquid.

1H NMR (400 MHz, CDCl$_3$, 20 °C): δ 4.42 (m, 2H, OCH$_2$CH$_2$O); 4.35 (m, 2H, OCH$_2$CH$_2$O); 3.76 (d, $^2J_{HP}$ = 11.8 Hz, 3H, OCH$_3$). 13C{H} NMR (101 MHz, CDCl$_3$, 20 °C): δ 66.13 (s, 2C, O-OC$_3$H$_7$). 31P{H} NMR (162 MHz, CDCl$_3$, 20 °C): δ 18.60.
Fig. S3. 1H NMR spectrum (400 MHz, CDCl$_3$, 20 °C) of 2-chloro-1,3,2-dioxaphospholane

Fig. S4. 31P{H} NMR spectrum (162 MHz, CDCl$_3$, 20 °C) of 2-chloro-1,3,2-dioxaphospholane
Fig. S5. 1H NMR spectrum (400 MHz, CDCl$_3$, 20 °C) of 2-chloro-2-oxo-1,3,2-dioxaphospholane

Fig. S6. 31P{1H} NMR spectrum (162 MHz, CDCl$_3$, 20 °C) of 2-chloro-2-oxo-1,3,2-dioxaphospholane
Fig. S7. 1H NMR spectrum (400 MHz, CDCl$_3$, 20 °C) of MeOEP (1)

Fig. S8. 13C{H} NMR spectrum (101 MHz, CDCl$_3$, 20 °C) of MeOEP (1)
S3.2. Synthesis of 2-isopropoxy-2-oxo-1,3,2-dioxaphospholane 2 (isopropyl ethylene phosphate, iPrOEP)

![Diagram of iPrOEP synthesis](image)

The compound was synthesized via a modified literature protocol. A flame-dried 500 mL three-neck flask, equipped with a dropping funnel, was charged with dry isopropanol (12 g, 0.2 mol), dry triethylamine (28 mL, 0.2 mol) and dry THF (80 mL). A solution of 2-chloro-2-oxo-1,3,2-dioxaphospholane (28.4 g, 0.2 mol) in dry THF (20 mL) was added dropwise under stirring at 0 °C. The mixture was allowed to warm to room temperature and stirred overnight. Triethylammonium chloride was filtered off, and the filtrate was concentrated in vacuo. The residue was purified by distillation under reduced pressure. The yield was 14.1 g (42%). B. p. 88-90 °C (0.4 Torr), colorless liquid.

First (1H NMR (400 MHz, CDCl₃, 20 °C): δ 4.72 (sept. of d, J₁HH = 6.6 Hz, 1H, O-CH(CH₃)₂); 4.40 (m, 2H, O-CH₂(CH₃)₂); 4.33 (m, 2H, O-CH₂(CH₃)₂); 1.33 (d, J₁HH = 6.6 Hz, 6H, O-CH(CH₃)₂). ¹³C{¹H} NMR (101 MHz, CDCl₃, 20 °C): δ 74.21 (d, J₁CP = 6.0 Hz, 1C, O-CHMe₂); 65.91 (d, J₁CP = 2.6 Hz, 2C, OCH₂CH₂O); 23.61 (s, 2C, O-CH(CH₃)₂). ³¹P{¹H} NMR (162 MHz, CDCl₃, 20 °C): δ 16.75 (s).

Fig. S9. ³¹P{¹H} NMR spectrum (162 MHz, CDCl₃, 20 °C) of MeOEP (1)
Fig. S10. 1H NMR spectrum (400 MHz, CDCl$_3$, 20 °C) of iPrOEP (2)

Fig. S11. 13C{1H} NMR spectrum (101 MHz, CDCl$_3$, 20 °C) of iPrOEP (2)
S3.3. Syntesis of 2-tert-butoxy-2-oxo-1,3,2-dioxaphospholane 4 (tert-butyl ethylene phosphane, 1BuOEP)

\[
\text{2-tert-Butoxy-1,3,2-dioxaphospholane.}
\]

A flame-dried 1000 mL three-neck flask, equipped with a dropping funnel, was charged with dry tert-butanol (38.6 g, 0.52 mol), dry triethylamine (78 mL, 0.52 mol) and dry diethyl ether (500 mL). A solution of 2-chloro-oxo-1,3,2-dioxaphospholane (66.0 g, 0.52 mol) in dry ether (60 mL) was added dropwise under stirring at \(0^\circ\text{C}\). The mixture was allowed to warm to room temperature and stirred overnight. Triethylammonium chloride was filtered off, and the filtrate was concentrated in vacuo. The yield was 67.1 g (78%). B. p. 70-75°C (13 Torr), colorless liquid.

\[\text{1H NMR (400 MHz, CDCl}_3, 20^\circ\text{C}) :} \delta 4.14 (m, 2H, OCH}_2CH}_2O); 3.88 (m, 2H, OCH}_2CH}_2O); 1.35 (s, 9H, O-C(CH}_3)_3.\]

\[\text{31P \{1H\} NMR (162 MHz, CDCl}_3, 20^\circ\text{C}) :} \delta 134.57 (s).\]

2-tert-Butoxy-2-oxo-1,3,2-dioxaphospholane 3 (tBuOEP).

A flame-dried 500 mL three-neck flask, equipped with a dropping funnel, was charged with 2-tert-butoxy-1,3,2-dioxaphospholane (8.2 g, 0.05 mol) in dry dichloromethane (100 mL). A solution of meta-
chloroperbenzoic acid (~0.055 mol) prepared by drying of the mixture of commercial 70-77% meta-chloroperbenzoic acid (13 g) in 100 mL of dichloromethane over MgSO₄, was added dropwise under stirring at 0 °C within 3 hours. The resulting precipitate of meta-chlorobenzoic acid was removed by filtration. The filtrate was treated with the aq. solutions of 15 % K₂CO₃ (2×40 mL) and 20% sodium thiosulfate (2×30 mL), dried over MgSO₄ and concentrated in vacuo to give a low-melting (M. p. = 28 °C) white crystalline substance. The yield was 6.1g (67%).

¹H NMR (400 MHz, CDCl₃, 20 °C): δ 4.33 (m, 2H, OCH₂CH₂O); 4.26 (m, 2H, OCH₂CH₂O); 1.47 (s, 9H, O-C(CH₃)₃). ¹³C{H} NMR (101 MHz, CDCl₃, 20 °C): δ 84.08 (d, 2JCP = 7.2 Hz, 1C, O-C(CH₃)₃); 65.52 (d, 2JCP = 2.3 Hz, 2C, OCH₂CH₂O); 29.67 (d, 3JCP = 4.4 Hz, 3C, O-C(CH₃)₃). ³¹P{H} NMR (162 MHz, CDCl₃, 20 °C): δ 13.21 (s). For C₆H₁₃O₄P Calc.: C, 40.00; H, 7.27; O, 35.53. Found: C, 40.11; H, 7.20; O, 44.36.

Fig. S13. ¹H NMR spectrum (400 MHz, CDCl₃, 20 °C) of ³⁷BuOEP (3)
Fig. S14. 13C{1H} NMR spectrum (101 MHz, CDCl$_3$, 20 °C) of iBuOEP (4)

Fig. S15. 31P{1H} NMR spectrum (162 MHz, CDCl$_3$, 20 °C) of iBuOEP (4)
S3.4. Synthesis of 2-diethylamino-2-oxo-1,3,2-dioxaphospholane 4 (N,N-diethyl ethylene phosphoramidate, Et₂NEP)

A flame-dried 500 mL three-neck flask, equipped with a dropping funnel, was charged with dry diethylamine (10.4 mL, 0.1 mol) in dry ether (100 mL). A solution of 2-chloro-2-oxo-1,3,2-dioxaphospholane (7.1 g, 0.05 mol) in dry ether (10 mL) was added dropwise under stirring at 0 °C. The mixture was allowed to warm to room temperature and stirred for 2 h. Diethylammonium chloride was removed by filtration and the filtrate was concentrated in vacuo. The residue was purified by distillation under reduced pressure. The yield was 5.1 g (56%). B. p. 118-122 °C / 0.8 Torr, colorless liquid.

1H NMR (400 MHz, CDCl₃, 20 °C): δ 4.38 (m, 2H, OCH₂CH₂O), 4.25 (m, 2H, OCH₂CH₂O); 3.04 (qd, 3J₉H = 7.3 Hz, 3J₁P = 7.2 Hz, 4H, NCH₂CH₃); 1.09 (t, 3J₁H = 7.3 Hz, 6H, N(CH₃)₂). 13C{H} NMR (101 MHz, CDCl₃, 20 °C): δ 65.44 (d, 2J₃P = 2.1 Hz, 2C, OCH₂CH₂O), 40.06 (d, 2J₃P = 5.2 Hz, 2C, NCH₂CH₃), 14.28 (d, 2C NCH₂CH₃). 31P{H} NMR (162 MHz, CDCl₃, 20 °C): δ 26.69 (s). For C₆H₁₄NO₃P Calc.: C, 40.22; H, 7.88; N, 7.82; O, 26.79. Found: C, 40.28; H, 7.94; N, 7.79; O, 26.72.

Fig. S16. 1H NMR spectrum (400 MHz, CDCl₃, 20 °C) of Et₂NEP (4)
Fig. S17. $^{13}\text{C}_{1}\{^1\text{H}\}$ NMR spectrum (101 MHz, CDCl$_3$, 20 °C) of Et$_2$NEP (4)

Fig. S18. $^{31}\text{P}_{1}\{^1\text{H}\}$ NMR spectrum (162 MHz, CDCl$_3$, 20 °C) of Et$_2$NEP (4)
S3.5. Synthesis of 2-ethyl-2-oxo-1,3,2-dioxaphospholane 5 (ethyl ethylene phosphonate, EtPPn)

A flame-dried flask, equipped with two dropping funnels, was charged with 80 mL of dry THF and cooled to −20 °C. Ethylphosphonic acid dichloride (15.6 g, 0.1 mol) was dissolved in dry THF (80 mL) and transferred into one dropping funnel. A solution of dry ethylene glycol (6.6 g, 0.1 mol) and dry pyridine (16.9 g, 0.2 mol) in THF (60 mL) was transferred into the second dropping funnel. Dropping speed was adjusted to be approximately equal for both mixtures. After complete addition the solution was stirred at −20 °C within 20 h. The precipitate of the pyridinium hydrochloride was removed by filtration, the filtrate was concentrated to one half of the initial volume and cooled to −50 °C. The new portion of the pyridinium hydrochloride was removed by filtration, after that the filtrate was evaporated. The residue was purified by distillation under reduced pressure. The yield was 8.6 g (yield: 64%). B. p. 106-108 °C / 0.36 Torr, colorless liquid.

1H NMR (400 MHz, CDCl$_3$, 20 °C): δ 4.44 (m, 2H, OCH$_2$CH$_2$O); 4.23 (m, 2H, OCH$_2$CH$_2$O); 1.94 (dq, 3J$_{HH}$ = 7.9 Hz, 2J$_{HP}$ = 18.1 Hz, 2H, CH$_2$CH$_3$); 1.16 (dt, 3J$_{HH}$ = 7.9 Hz, 3J$_{HP}$ = 21.3 Hz, 3H, CH$_2$CH$_3$).

13C{H} NMR (101 MHz, CDCl$_3$, 20 °C): δ 66.39 (bs, 2C, OCH$_2$CH$_2$O); 19.58 & 18.25 (d, 1J$_{CP}$ = 135 Hz, 1C, CH$_2$CH$_3$); 6.85 (d, 2J$_{CP}$ = 7.0 Hz, 1C, CH$_2$CH$_3$).

31P{H} NMR (162 MHz, CDCl$_3$, 20 °C): δ 52.64 (s).

Fig. S19. 1H NMR spectrum (400 MHz, CDCl$_3$, 20 °C) of EtPPn (5)
Fig. S20. 13C{$_1^1$H} NMR spectrum (101 MHz, CDCl$_3$, 20 °C) of EtPPn (5)

Fig. S21. 31P{$_1^1$H} NMR spectrum (162 MHz, CDCl$_3$, 20 °C) of EtPPn (5)
S3.6. Synthesis of 2-tert-butyl-2-oxo-1,3,2-dioxaphospholane 6 (tert-butyl ethylene phosphonate, tBuPPn)

A flame-dried flask was charged with dry tert-butyl dichlorophosphate (12.5 g, 70 mmol), ethylene glycol (4.34 g, 70 mmol) and dry THF (150 mL). Sodium hydride (60% suspension, 5.6 g, 0.14 mol) was added by portions, the mixture was stirred at 40 °C within 2 hours and at 20 °C overnight. The resulting suspension was treated with 500 mL of water, and extracted three times with 50 mL of dichloromethane. The organic phase was separated, dried and concentrated *in vacuo*. The residue was recrystallized twice from hexane to give tBuEP as a white crystalline solid. The yield was 4.6 g, 19%.

1H NMR (400 MHz, CDCl$_3$, 20 °C): δ 4.49 (m, 2H, OC$_2$H$_2$O); 4.24 (m, 2H, OCH$_2$CH$_2$O); 1.25 (d, 2J$_{HP}$ = 17.6 Hz, 9H, C(C(CH$_3$)$_3$).

13C{H} NMR (101 MHz, CDCl$_3$, 20 °C): δ 66.70 (d, 2J$_{CP}$ = 2.3 Hz, 2C, OCH$_2$CH$_2$O); 32.95 & 31.65 (d, 1J$_{CP}$ = 129.7 Hz, 1C, C(CH$_3$)$_3$); 24.98 (d, 2J$_{CP}$ = 2.0 Hz, 3C, C(CH$_3$)$_3$).

31P{H} NMR (162 MHz, CDCl$_3$, 20 °C): δ 57.52 (s).

For C$_6$H$_{13}$O$_3$P Calc.: C, 43.90; H, 7.98; O, 29.24. Found: C, 43.95; H, 8.02; O, 29.19.

Fig. S22. 1H NMR spectrum (400 MHz, CDCl$_3$, 20 °C) of tBuPPn (6)
Fig. S23. 13C1H NMR spectrum (101 MHz, CDCl₃, 20 °C) of 3BuPPn (6)

Fig. S24. 31P1H NMR spectrum (162 MHz, CDCl₃, 20 °C) of 3BuPPn (6)

References
S4. Homopolymer synthesis and characterization

S4.1. Polymerization of 1PrOEP

Polymerization of 1PrOEP using Mg3 as the catalyst (Table 1, Run 3).

1PrOEP (0.977 g, 5.88·10^{-3} mol) was introduced into a vial equipped with a magnetic stirrer and septum, 0.46 mL dry CH$_2$Cl$_2$ was added to 1PrOEP. A stock solution of Mg3 in dry THF (317 mg, 7.50·10^{-4} mol Mg in 8.2 mL solution) was prepared. The polymerization was started by rapid addition of the stock solution of 5 (0.4 mL solution, 7.31·10^{-5} mol Mg) to the stirred solution of 1PrOEP by a syringe to give a total reaction concentration of 2M 1PrOEP. The polymerization was terminated after the required time by the addition of an excess of acetic acid in CH$_2$Cl$_2$. The monomer conversion was determined using 31P NMR spectroscopy by integration of the monomer (δ 16.7 ppm) and polymer (δ –2.15 ppm) resonance signals. The polymer was purified by precipitation using a 5-fold volume excess of dry diethyl ether and subsequent centrifugation (5 min, 4000 rpm), supernatant was decanted and redissolved in dry CH$_2$Cl$_2$, then precipitated and centrifuged again. The polymer obtained was dissolved in dry CH$_2$Cl$_2$, the solvent was removed in vacuo. The yield was 0.85 g (87%).

1H NMR (400 MHz, CDCl$_3$, 20 °C): δ 5.00 (d, 3J$_{HP}$ = 7.9 Hz, PhCH$_2$H$_2$); 4.61 (d of sept, 3J$_{HP}$ = 3J$_{HH}$ = 6.3 Hz, 1H); 4.16 (dd, 3J$_{HP}$ = 4.3 Hz, 4H); 3.72 (d, 3J$_{HH}$ = 6.3 Hz, 3H), 1.28 (d, 3J$_{HH}$ = 6.3 Hz, 6H).

13C{H} NMR (101 MHz, CDCl$_3$, 20 °C): δ 73.50 (d, 2J$_{CP}$ = 6.1 Hz); 65.99 (dd, 2J$_{CP}$ ~ 2J$_{CP}$ ~ 6.5 Hz); 23.60 (d, 2J$_{CP}$ = 5.5 Hz).

31P{H} NMR (162 MHz, CDCl$_3$, 20 °C): δ –2.15.

M_n (NMR) of polyphosphates were calculated using integral intensities of PhCH$_2$O (5.0 ppm, 2H), [PhCH$_2$O]; –OCH$_2$CH$_2$O– (4.16 ppm, 4H), [OCH$_2$CH$_2$O] and –CH$_2$OH (3.7 ppm, 2H) [CH$_2$OH] by the formula:

$$M_n (NMR) = \frac{I[OCH$_2$CH$_2$O]+I[CH$_2$OH]}{I[PhCH$_2$O]+I[CH$_2$OH]} \times M_{Sub} + 108.13$$

where 108.13 is MW of PhCH$_2$OH.

M_n (theor) was calculated by formula

$$M_n (theor) = \frac{[Sub]}{[Cat]} \times M_{Sub} + 108.13$$

For example, poly(1PrOEP) obtained by polymerization of 1PrOEP in the presence of Mg3 (monomer/Mg ratio 80), is characterized by M_n(NMR) = 1.38·10^{4} Da (Table 1 Run 3 in the main text of the article, for 1H NMR spectrum see Figure S25).
Fig. S25. 1H NMR spectrum (400 MHz, CDCl$_3$, 20 °C) of poly(iPrOEP) prepared using Mg$_3$ as the catalyst at 20 °C, [Sub]/[Cat] = 80 (Table 1, Run 3)

Fig. S26. 13C{1H} NMR spectrum (101 MHz, CDCl$_3$, 20 °C) of poly(iPrOEP) (Table 1, Run 3)
S4.2. Polymerization of MeOEP

Polymerization of MeOEP using Mg3 as the catalyst at 20 °C (Table 2, Run 1).
MeOEP (0.252 g, 0.181 mL, 1.82·10^{-3} mol) was introduced into a vial equipped with magnetic stirrer and septum, 0.53 mL dry CH₂Cl₂ was added to MeOEP. A stock solution of Mg3 in dry THF (317 mg, 7.50·10^{-4} mol Mg in 8.2 mL solution) was prepared. The polymerization was started by rapid addition of the stock solution of 5 (0.2 mL solution, 1.82·10^{-5} mol Mg) to the stirred solution of MeOEP by a syringe
to give a total reaction concentration of 2M MeOEP. The polymerization was terminated after 1 hour by the addition of an excess of acetic acid in CH$_2$Cl$_2$. The monomer conversion was determined using 31P NMR spectroscopy by integration of the monomer (δ 18.6 ppm) and polymer (δ –0.19 ppm) resonance signals. The polymer was precipitated twice using a 5-fold volume excess of dry diethyl ether. The precipitated polymer was redissolved in dry CH$_2$Cl$_2$, the solvent was removed in vacuo. The yield was 0.21 g (84%). The amount of branches in polymer chain was determined using 31P NMR spectroscopy by integration of the resonance signals of branched (δ –1.47 ppm) and unbranched (δ –0.19 ppm) phosphorus atoms, see Fig. S31.

Polymerization of MeOEP using TBD as the catalyst at 20 °C (Table 2, Run 2).

MeOEP (0.496 g, 0.357 mL, 3.59·10$^{-3}$ mol) was introduced into a vial equipped with magnetic stirrer and septum, 0.85 mL dry CH$_2$Cl$_2$ was added to MeOEP. A stock solution of TBD in dry toluene (0.50 g, 3.59·10$^{-3}$ mol in 40.0 mL solution) and a stock solution of the PhCH$_2$OH (initiator) in dry CH$_2$Cl$_2$ (39 mg benzyl alcohol, 3.61·10$^{-4}$ mol in 2.0 mL solution) were prepared. 0.2 mL of the stock solution of the initiator (3.61·10$^{-5}$ mol) was added to the stirred solution of MeOEP. The polymerization was started by rapid addition of the stock solution of TBD (0.4 mL solution, 3.59·10$^{-5}$ mol) to the to the reaction mixture by a syringe to give a total reaction concentration of 2M MeOEP. The polymerization was terminated after 1 hour by the addition of an excess of acetic acid in CH$_2$Cl$_2$. The monomer conversion was determined using 31P NMR spectroscopy by integration of the monomer (δ 18.6 ppm) and polymer (δ –0.19 ppm) resonance signals. The polymer was precipitated twice using a 5-fold volume excess of dry diethyl ether. The precipitated polymer was redissolved in dry CH$_2$Cl$_2$, the solvent was removed in vacuo. The yield was 0.44 g (88%). The amount of branches in polymer chain was determined using 31P NMR spectroscopy by integration of the resonance signals of branched (δ –1.47 ppm) and unbranched (δ –0.19 ppm) phosphorus atoms, see Fig. S33.

Polymerization of MeOEP using TBD as the catalyst at 20 °C (Table 2, Run 3).

The same experimental was performed. Reaction time was 24 h.

Polymerization of MeOEP using DBU/TU as the catalyst at 20 °C (Table 2, Runs 4-6).

MeOEP (1.39 g, 1.0 mL, 1.01·10$^{-2}$ mol) and TU (0.187 g, 5.05·10$^{-4}$ mol) were introduced into a vial equipped with magnetic stirrer and septum. 3.65 mL dry CH$_2$Cl$_2$ was added to MeOEP and TU. A stock solution of DBU in dry CH$_2$Cl$_2$ (0.769 g, 5.05·10$^{-3}$ mol in 2.0 mL solution) and a stock solution of the PhCH$_2$OH (initiator) in dry CH$_2$Cl$_2$ (0.109 g, 1.01·10$^{-3}$ mol in 2.0 mL solution) were prepared. 0.2 mL of the stock solution of the initiator (1.01·10$^{-4}$ mol) was added to the stirred solution of MeOEP and TU. The polymerization was started by rapid addition of the stock solution of DBU (0.2 mL, 5.05·10$^{-4}$ mol) to the reaction mixture by a syringe to give a total reaction concentration of 2M MeOEP. The polymerization was terminated after 1 hour by the addition of an excess of acetic acid in toluene. The monomer conversion was determined using 31P NMR spectroscopy by integration of the monomer (δ 18.6 ppm) and polymer (δ –0.19 ppm) resonance signals. The polymer was precipitated twice using a 5-fold volume excess of dry diethyl ether. The precipitated polymer was redissolved in dry CH$_2$Cl$_2$, the solvent was removed in vacuo. The yield was 1.20 g (86%). The amount of branches in polymer chain was determined using 31P NMR spectroscopy by integration of the resonance signals of branched (δ –1.47 ppm) and unbranched (δ –0.19 ppm) phosphorus atoms, see Fig. S34.
Fig. S29. 1H NMR spectrum (400 MHz, CDCl$_3$, 20 °C) of partially branched poly(MeOEP) prepared using Mg$_3$ as the catalyst at 20 °C (Table 2, Run 1)

Fig. S30. 13C{1H} NMR spectrum (101 MHz, CDCl$_3$, 20 °C) of partially branched poly(MeOEP) prepared using Mg$_3$ as the catalyst at 20 °C (Table 2, Run 1)
Fig. S31. 31P{1H} NMR spectrum (162 MHz, CDCl$_3$, 20 °C) of partially branched poly(MeOEP) prepared using Mg$_3$ as the catalyst at 20 °C (Table 2, Run 1).

Fig. S32. 1H NMR spectra (400 MHz, CDCl$_3$, 20 °C) of partially branched poly(MeOEP) (Table 2, Run 2): a) without H–P decoupling; b) full H–P decoupling; c) H–P decoupling at 1.1 ppm of 31P scale; d) H–P decoupling at -1.5 ppm of 31P scale.
Fig. S33. 31P{1H} NMR spectrum (162 MHz, CDCl$_3$, 20 °C) of partially branched poly(MeOEP) prepared using TBD as the catalyst at 20 °C, reaction time 1 h (Table 2, Run 2).

Fig. S34. 31P{1H} NMR spectrum (162 MHz, CDCl$_3$, 20 °C) of partially branched poly(MeOEP) prepared using DBU/TU as the catalyst at 20 °C, reaction time 1 h (Table 2, Run 6).
Polymerization of MeOEP using \textit{Mg3} as the catalyst at -20 °C (Table 2, Run 10).

MeOEP (0.252 g, 0.181 mL, 1.82·10^{-3} mol) was introduced into a vial equipped with magnetic stirrer and septum, 0.53 mL dry CH$_2$Cl$_2$ was added to MeOEP. A stock solution of \textit{Mg3} in dry THF (317 mg, 7.50·10^{-4} mol Mg in 8.2 mL solution) was prepared. All solutions were cooled down to −20 °C. The polymerization was started by rapid addition of the stock solution of \textit{Mg3} (0.2 mL solution, 1.82·10^{-5} mol Mg) to the stirred solution of MeOEP by a syringe to give a total reaction concentration of 2M MeOEP. Probes of the reaction mixture after 1, 5, 15 and 60 min were collected using a syringe and immediately poured into NMR tubes containing 2.0 μL AcOH in 600 μL of CDCl$_3$. The polymerization was terminated in 1 hour by the addition of an excess of acetic acid in CH$_2$Cl$_2$. The monomer conversion was determined using 31P NMR spectroscopy by integration of the monomer (δ 18.6 ppm) and polymer (δ −0.19 ppm) resonance signals. The polymer was precipitated twice using a 5-fold volume excess of dry diethyl ether. The precipitated polymer was redissolved in dry CH$_2$Cl$_2$, the solvent was removed \textit{in vacuo}. The amount of branches in polymer chain was determined using 31P NMR spectroscopy by integration of the resonance signals of branched (δ −1.47 ppm) and unbranched (δ −0.19 ppm) phosphorus atoms, see Fig. S37.

Polymerization of MeOEP using \textit{Mg3} as the catalyst at -50 °C (Table 2, Run 15).

MeOEP (0.252 g, 0.181 mL, 1.82·10^{-3} mol) was introduced into a vial equipped with magnetic stirrer and septum, 0.53 mL dry CH$_2$Cl$_2$ was added to MeOEP. A stock solution of \textit{Mg3} in dry THF (317 mg, 7.50·10^{-4} mol Mg in 8.2 mL solution) was prepared. All solutions were cooled down to -50 °C. The polymerization was started by rapid addition of the stock solution of \textit{Mg3} (0.2 mL solution, 1.82·10^{-5} mol Mg) to the stirred solution of MeOEP by a syringe to give a total reaction concentration of 2M MeOEP. The polymerization was terminated in 1 hour by the addition of an excess of acetic acid in CH$_2$Cl$_2$. The monomer conversion was determined using 31P NMR spectroscopy by integration of the monomer (δ 18.6 ppm) and polymer (δ −0.19 ppm) resonance signals. The polymer was precipitated twice using a 5-fold volume excess of dry diethyl ether. The precipitated polymer was redissolved in dry CH$_2$Cl$_2$, the solvent was removed \textit{in vacuo}. The yield was 0.22 g (88%). The polymer obtained at −50 °C is linear, see Fig. S38.

1H NMR (400 MHz, CDCl$_3$, 20 °C): δ 5.04 (d, 3J$_{HP}$ = 8.3 Hz, PhCH$_2$); 4.22 (dd, 3J$_{HP}$ = 4.6 Hz, 4H); 3.77 (d, 3J$_{HP}$ = 11.0 Hz, 3H).

13C\{H\} NMR (101 MHz, CDCl$_3$, 20 °C): δ 66.36 (dd, 2J$_{CP}$ = 3J$_{CP}$ = 6.5 Hz); 54.70 (d, 2J$_{CP}$ = 6.6 Hz).

31P\{H\} NMR (162 MHz, CDCl$_3$, 20 °C): δ −0.19.
Fig. S35. 1H NMR spectrum (400 MHz, CDCl$_3$, 20 °C) of poly(MeOEP) prepared using Mg$^{3+}$ as the catalyst at –20 °C (Table 2, Run 10)

Fig. S36. 13C{$_1^1$H} NMR spectrum (101 MHz, CDCl$_3$, 20 °C) of poly(MeOEP) prepared using Mg$^{3+}$ as the catalyst at –20 °C (Table 2, Run 10)
Fig. S37. 31P{¹H} NMR spectrum (162 MHz, CDCl₃, 20 °C) of poly(MeOEP) prepared using Mg₃ as the catalyst at –20 °C (Table 2, Run 10).

Fig. S38. 31P{¹H} NMR spectrum (162 MHz, CDCl₃, 20 °C) of poly(MeOEP) prepared using Mg₃ as the catalyst at –50 °C (Table 2, Run 15).
S4.3. Polymerization of tBuOEP

Polymerization of tBuOEP using Mg3 as the catalyst at 20 °C (Table 3, Run 4).

$tBuOEP$ (0.660 g, $3.66 \cdot 10^{-3}$ mol) was introduced into a vial equipped with magnetic stirrer and septum, dry CH$_2$Cl$_2$ was added to give a total reaction volume of 1.4 mL. A stock solution of Mg3 in dry THF (317 mg, $7.50 \cdot 10^{-4}$ mol Mg in 4.1 mL solution) was prepared. The polymerization was started by rapid addition of the stock solution of Mg3 (0.4 mL solution, $7.31 \cdot 10^{-5}$ mol Mg) to the stirred solution of tBuOEP by a syringe to give a total reaction concentration of 2M $tBuOEP$. The polymerization was terminated after 18 hours by the addition of an excess of acetic acid in CH$_2$Cl$_2$. The monomer conversion was determined using 31P NMR spectroscopy by integration of the monomer ($\delta = 13.2$ ppm) and polymer ($\delta = -5.8$ ppm) resonance signals. The polymer was purified by precipitation using a 5-fold volume excess of dry diethyl ether and subsequent centrifugation (5 min, 4000 rpm), supernatant was decanted and redissolved in dry CH$_2$Cl$_2$, then precipitated and centrifuged again. The polymer obtained was dissolved in dry CH$_2$Cl$_2$, the solvent was removed in vacuo. The yield was 0.58 g (88%).

Polymerization of tBuOEP using TBD as the catalyst at 20 °C (Table 3, Run 6).

$tBuOEP$ (0.971 g, $5.39 \cdot 10^{-3}$ mol) was introduced into a vial equipped with magnetic stirrer and septum, dry CH$_2$Cl$_2$ was added to give a total reaction volume of 2.3 mL. A stock solution of TBD in dry toluene (1.00 g, $7.18 \cdot 10^{-3}$ mol in 10.0 mL solution) and a stock solution of the initiator in dry CH$_2$Cl$_2$ (23 mg benzyl alcohol, $2.13 \cdot 10^{-3}$ mol in 1.0 mL solution) were prepared. 0.1 mL of the stock solution of the initiator ($2.13 \cdot 10^{-4}$ mol) was added to the stirred solution of $tBuOEP$. The polymerization was started by rapid addition of the stock solution of TBD (0.3 mL solution, $2.15 \cdot 10^{-4}$ mol) to the reaction mixture by a syringe to give a total reaction concentration of 2M tBuOEP. The polymerization was terminated after 22 hours by the addition of an excess of acetic acid in CH$_2$Cl$_2$. The monomer conversion was determined using 31P NMR spectroscopy by integration of the monomer ($\delta = 13.2$ ppm) and polymer ($\delta = -5.8$ ppm) resonance signals. The polymer was purified by precipitation using a 5-fold volume excess of dry diethyl ether and subsequent centrifugation (5 min, 4000 rpm), supernatant was decanted and redissolved in dry CH$_2$Cl$_2$, then precipitated and centrifuged again. The polymer obtained was dissolved in dry CH$_2$Cl$_2$, the solvent was removed in vacuo. The yield was 0.76 g (78%).

1H NMR (400 MHz, CDCl$_3$, 20 °C): δ 4.07 (m, 4H); 1.39 (bs, 9H).

13C{H} NMR (101 MHz, CDCl$_3$, 20 °C): δ 84.14 (d, $^2J_{CP} = 7.1$ Hz); 65.83 (dd, $J_{CP} = 6.0$ & 8.1 Hz); 29.90 (d, $^3J_{CP} = 4.1$ Hz).

31P{H} NMR (162 MHz, CDCl$_3$, 20 °C): δ -5.76.
Fig. S39. 1H NMR spectrum (400 MHz, CDCl$_3$, 20 °C) of poly(tBuOEP) prepared using Mg3 as the catalyst at 20 °C (Table 3, Run 1)

Fig. S40. 13C{1H} NMR spectrum (101 MHz, CDCl$_3$, 20 °C) of poly(tBuOEP) prepared using Mg3 as the catalyst at 20 °C (Table 3, Run 1)
S4.4. Polymerization of Et$_2$NEP

Polymerization of Et$_2$NEP using Mg$_3$ as the catalyst at 100 °C (Table 3, Run 7).

Et$_2$NEP (0.448 g, 2.5·10$^{-3}$ mol) was introduced into a vial equipped with magnetic stirrer and septum, the vial was heated up to 100 °C. A stock solution of Mg$_3$ in dry toluene (22 mg, 5.20·10$^{-5}$ mol Mg in 0.5 mL solution) was prepared. The polymerization was started by rapid addition of the stock solution of 5 (0.25 mL solution, 2.6·10$^{-5}$ mol Mg) to the stirred solution of Et$_2$NEP by a syringe and the temperature kept at 100 °C. The polymerization was terminated after 1 hour by the addition of an excess of acetic acid in CH$_2$Cl$_2$. The monomer conversion was determined using 31P NMR spectroscopy by integration of the monomer (δ 26.7 ppm) and polymer (δ 10.4 ppm) resonance signals. The polymer was precipitated twice using a 5-fold volume excess of dry diethyl ether. The precipitated polymer was redissolved in dry CH$_2$Cl$_2$, the solvent was removed in vacuo. The yield was 0.29 g (64%).

1H NMR (400 MHz, CDCl$_3$, 20 °C): δ 4.08 (m, 4H, –OC$_2$H$_4$O–); 3.05 (qd, 3J$_{HH}$ = 6.8 Hz, 3J$_{HP}$ = 5.2 Hz, 4H, –C$_2$H$_3$); 1.07 (t, 3J$_{HH}$ = 6.8 Hz, 6H, –CH$_2$C$_3$).

13C{H} NMR (101 MHz, CDCl$_3$, 20 °C): δ 64.74 (m); 39.79 (d, 2J$_{CP}$ = 4.7 Hz); 14.23.

31P{H} NMR (162 MHz, CDCl$_3$, 20 °C): δ 10.62.

Fig. S41. 31P{H} NMR spectrum (162 MHz, CDCl$_3$, 20 °C) of poly(tBuOEP) prepared using Mg$_3$ as the catalyst at 20 °C (Table 3, Run 1)
Fig. S42. 1H NMR spectrum (400 MHz, CDCl$_3$, 20 °C) of poly(Et$_2$NEP) prepared using Mg$_3$ as the catalyst at 100 °C (Table 3, Run 4)

Fig. S43. 13C {1H} NMR spectrum (101 MHz, CDCl$_3$, 20 °C) of poly(Et$_2$NEP) prepared using Mg$_3$ as the catalyst at 100 °C (Table 3, Run 4)
Fig. S44. 31P{1H} NMR spectrum (162 MHz, CDCl$_3$, 20 °C) of poly(Et$_2$NEP) prepared using Mg$_3$ as the catalyst at 100 °C (Table 3, Run 4)

S4.5. Polymerization of EtPPn

Polymerization of EtPPn using Mg$_3$ as the catalyst at 20 °C (Table 3, Run 9).

EtPPn (0.50 g, 3.66·10^{-3} mol) was introduced into a vial equipped with magnetic stirrer and septum, dry CH$_2$Cl$_2$ was added to give a total reaction volume of 1.4 mL, the mixture was cooled to –20 °C. A stock solution of Mg$_3$ in dry THF (317 mg, 7.50·10^{-4} mol Mg in 4.1 mL solution) was prepared. The polymerization was started by rapid addition of the stock solution of Mg$_3$ (0.4 mL solution, 7.31·10^{-5} mol Mg) to the stirred solution of EtPPn by a syringe to give a total reaction concentration of 2M EtPPn. The polymerization was terminated after 1 h of the stirring at –20 °C by the addition of an excess of acetic acid in CH$_2$Cl$_2$. The monomer conversion was determined using 31P NMR spectroscopy by integration of the monomer (δ = 52.6 ppm) and polymer (δ = 35.3 ppm) resonance signals. The polymer was purified by precipitation using a 5-fold volume excess of dry diethyl ether and subsequent centrifugation (5 min, 4000 rpm), supernatant was decanted and redissolved in dry CH$_2$Cl$_2$, then precipitated and centrifugated again. The polymer obtained was dissolved in dry CH$_2$Cl$_2$, the solvent was removed in vacuo. The yield was 0.45 g (89%).
$^1\text{H-NMR}$ (400 MHz, CDCl$_3$, 20 °C): δ 5.05 (d, $^3J_{HP} = 8.0$ Hz, PhCH$_2$); 4.24 (m, 2H); 4.16 (m, 2H); 1.78 (qd, $^3J_{HH} = 7.8$ Hz, $^2J_{HP} = 18.3$ Hz, 2H, -CH$_2$CH$_3$); 1.14 (td, $^3J_{HH} = 7.8$ Hz, $^3J_{HP} = 20.4$ Hz, 3H, -CH$_2$CH$_3$).

$^{13}\text{C}\{\text{H}\}$ NMR (101 MHz, CDCl$_3$, 20 °C): δ 64.09 (dd, $^2J_{CP} \sim 3.5$ Hz); 19.09 & 17.67 (d, $^1J_{CP} = 142$ Hz); 6.05 (d, $^2J_{CP} = 7.1$ Hz).

$^{31}\text{P}\{\text{H}\}$ NMR (162 MHz, CDCl$_3$, 20 °C): δ 35.29.

![Fig. S45. ^1H NMR spectrum (400 MHz, CDCl$_3$, 20 °C) of poly(EtPPn) prepared using Mg3 as the catalyst at 20 °C (Table 3, Run 6)]
Fig. S46. 13C–1H NMR spectrum (101 MHz, CDCl$_3$, 20 °C) of poly(EtPPn) prepared using Mg3 as the catalyst at 20 °C (Table 3, Run 6)

Fig. S47. 31P–1H NMR spectrum (162 MHz, CDCl$_3$, 20 °C) of poly(EtPPn) prepared using Mg3 as the catalyst at 20 °C (Table 3, Run 6)
S4.8. Polymerization of tBuPPn

Polymerization of tBuPPn using Mg3 as the catalyst at 100 °C (Table 3, Run 10).

tBuPPn (0.410 g, 2.5·10^{-3} mol) was introduced into a vial equipped with magnetic stirrer and septum, the vial was heated up to 100 °C. A stock solution of Mg3 in dry toluene (22 mg, 5.20·10^{-5} mol Mg in 0.5 mL solution) was prepared. The polymerization was started by rapid addition of the stock solution of 5 (0.25 mL solution, 2.6·10^{-5} mol Mg) to the stirred solution of tBuPPn by a syringe and the temperature kept at 100 °C. The polymerization was terminated after 1 hour by the addition of an excess of acetic acid in CH2Cl2. The monomer conversion was determined using 31P NMR spectroscopy by integration of the monomer (δ 57.7 ppm) and polymer (δ 38.3 ppm) resonance signals. The polymer was precipitated twice using a 5-fold volume excess of dry diethyl ether. The precipitated polymer was redissolved in dry CH2Cl2, the solvent was removed in vacuo. The yield was 0.30 g (74%).

1H-NMR (400 MHz, CDCl3, 20 °C): δ 4.22 (m, 4H, –OCH2CH2O–); 1.17 (d, JHP = 17.2 Hz, 9H, –C(C(H3))3).
13C{H}-NMR (101 MHz, CDCl3, 20 °C): δ 64.94 (m); 32.39 & 30.98 (d, JCP = 148.5 Hz); 24.69.
31P{H}-NMR (162 MHz, CDCl3, 20 °C): δ 38.31.

Fig. S48. 1H NMR spectrum (400 MHz, CDCl3, 20 °C) of poly(tBuPPn) prepared using Mg3 as the catalyst at 100 °C (Table 3, Run 7)
Fig. S49. 13C{1H} NMR spectrum (101 MHz, CDCl$_3$, 20 °C) of poly(tBuPPn) prepared using Mg3 as the catalyst at 100 °C (Table 3, Run 7)

Fig. S50. 31P{1H} NMR spectrum (162 MHz, CDCl$_3$, 20 °C) of poly(tBuPPn) prepared using Mg3 as the catalyst at 100 °C (Table 3, Run 7)