Supporting Information

Photosensitive Poly(o-nitrobenzoyloxycarbonyl-L-lysine)-b-PEO Polypeptide Copolymers: Synthesis, Multiple Self-Assembly Behaviors, and the Photo/pH-Thermo-Sensitive Hydrogels

Pan Li, Jiacheng Zhang, Chang-Ming Dong*

School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

Figure S1. 1H NMR spectrum of oNB-Lys NCA in DMSO-d_6 (A) and its 13C NMR spectrum in CD$_3$CN (B) ("*" denotes the EtOAc solvent peaks).
Figure S2. GPC traces of the PEO-NH$_2$ and PNBL-b-PEO block copolymers.

Figure S3. FT-IR spectra of the PEO-NH$_2$ and PNBL-b-PEO block copolymers.
Figure S4. Photocleavage percentage of oNB group of PNBL9-b-PEO in methanol solution (A) and in aqueous solution (B).

Figure S5. DLS-averaged diameter of PLys9-b-PEO micelles as a function of pH.
Figure S6. Digital images of thermo-sensitive hydrogels H2, H5 and H6 (A) and pH-sensitive hydrogels H5 and H6 (B).

Figure S7. Storage (G') and (G'') loss modulus as a function of strain for hydrogels H2, H5 and H6.
Figure S8. Dependence of UV cleavage time on the hydrogel mechanical properties.

Figure S9. DSC curves of PEO-NH$_2$, PNBL$_9$-b-PEO, hydrogel H2, H5 and H6 in the second heating run.
Figure S10. The relationship of the absorbance intensity of DPH as a function of copolymer concentration of PNBL₉-b-PEO (pH=7.5), PLys₉-b-PEO (pH=10) and PLys₉-b-PEO@α-CD (pH=3) respectively.