Supplementary Information

Bingkun Yan, Yan Zhang*, Chao Wei and Yue Xu

Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China

*Corresponding author. E-mail: zhang_yan@ecust.edu.cn Tel: +86 021 65243432
Experimental

50 mg of the mPEG-b-PS\textsubscript{20} copolymer and 0.25mg of Nile Red was dissolved in 2.0 mL of tetrahydrofuran (THF). The mixture was added to 5.0 mL of deionized water under vigorous stirring at 37 °C. The mixture was then transferred to a dialysis bag (MWCO 3500) and dialyzed for 24 h. After that, the Nile Red loaded nanoparticle solution was concentrated to the concentration of 2.0 mg mL-1.

The H\textsubscript{2}O\textsubscript{2}-triggered release profiles of Nile Red from the mPEG-b-PS\textsubscript{20} nanoparticles were studied using a dialysis bag (MWCO = 3500) in different media. Typically, Nile Red-loaded nanoparticle solution (3 mL) in a dialysis bag was suspended in 27 mL PBS solution at different H\textsubscript{2}O\textsubscript{2} concentration of 100, 200 and 400mM, and gently shaken at 37 °C in a thermostatic rotary shaker at 100 rpm. The H\textsubscript{2}O\textsubscript{2} solution was withdrawn at predetermined time intervals for analysis, and replenished each time with an equal volume of fresh H\textsubscript{2}O\textsubscript{2} solution to keep a constant volume of the medium. The content of Nile Red that was released into the H\textsubscript{2}O\textsubscript{2} solution was measured by quantifying the absorbance of Nile Red using fluorescence emission spectra. The data were averaged with three independent measurements.

Results and discussion

<table>
<thead>
<tr>
<th>Sample[a]</th>
<th>mPEG/mg</th>
<th>MS/mg</th>
<th>N-435/mg</th>
<th>Methylbenzene/ml</th>
<th>Time/h</th>
<th>T/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>mPEG\textsubscript{45}-b-PS\textsubscript{5}</td>
<td>400</td>
<td>296</td>
<td>30</td>
<td>3</td>
<td>8</td>
<td>65</td>
</tr>
<tr>
<td>mPEG\textsubscript{45}-b-PS\textsubscript{8}</td>
<td>250</td>
<td>296</td>
<td>30</td>
<td>3</td>
<td>8</td>
<td>65</td>
</tr>
<tr>
<td>mPEG\textsubscript{45}-b-PS\textsubscript{10}</td>
<td>200</td>
<td>296</td>
<td>30</td>
<td>3</td>
<td>8</td>
<td>65</td>
</tr>
<tr>
<td>mPEG\textsubscript{45}-b-PS\textsubscript{15}</td>
<td>133.3</td>
<td>296</td>
<td>30</td>
<td>3</td>
<td>8</td>
<td>65</td>
</tr>
<tr>
<td>mPEG\textsubscript{45}-b-PS\textsubscript{20}</td>
<td>100</td>
<td>296</td>
<td>30</td>
<td>3</td>
<td>8</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>mPEG_{45-b-PS_{30}}</td>
<td>66</td>
<td>296</td>
<td>30</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>mPEG_{45-b-PS_{50}}</td>
<td>40</td>
<td>296</td>
<td>30</td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

Fig. S1 1H NMR spectrum of MS monomer crude product

Fig. S2 The ratio of MS monomer in the crude product
FT-IR (v, cm$^{-1}$): 1744 cm$^{-1}$ (C=O). 1H NMR (400MHz, CDCl$_3$, δ, ppm): δ=4.39 (t, OCH$_2$, 8H), 2.90 (m, OCH$_2$CH$_2$S, 8H); 13C NMR (500MHz, CDCl$_3$): δ=154.96 (CO), 67.01 (OCH$_2$CH$_2$S), 31.31 (OCH$_2$CH$_2$S).

HRMS (ESI, m/z): M+ Calculated for C$_{10}$H$_{16}$O$_6$S$_2$Na, 319.0286; found, 319.0288.

Fig. S3 FT-IR of MS monomer

Fig. S4 13C NMR spectrum of MS monomer
The oxidation of TDG

Scheme S1. The oxidation of TDG
Fig. S6. Selection of time-resolved 1H NMR spectra of the oxidation of TDG with 200 mM H$_2$O$_2$.

Fig. S7 The FT-IR comparison of mPEG-b-PS (PS) and mPEG-b-OPS (PSO).
Fig. S8 The contact angle comparison of mPEG-b-PS (a) and mPEG-b-OPS (b).

Fig. S9 In vitro Nile Red release from mPEG-b-PS nanoparticles at different H$_2$O$_2$ concentrations at 37 °C.