Supporting Information

A New Echelon of Precision Polypentenamers: Highly Isotactic Branching on Every Five Carbons

Stefan Brits, William J. Neary, Goutam Palui, & Justin G. Kennemur

Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA

Table of Contents:

Synthesis of Mosher acid and DACH-Phenyl Trost Ligand S3

Figure SI-1. 1H NMR spectra of rac-1 S4

Figure SI-2. 13C NMR spectra of rac-1 S5

Figure SI-3. 1H-1H COSY spectra of rac-1 S6

Figure SI-4. GC-EI/MS of rac-1 S7

Figure SI-5. 1H NMR spectra of rac-3 S8

Figure SI-6. 13C NMR spectra of rac-3 S9

Figure SI-7. 1H-1H COSY spectra of rac-3 S10

Figure SI-8. GC-EI/MS of rac-3 S11

Figure SI-9. 1H NMR spectra of rac-2 S12

Figure SI-10. 13C NMR spectra of rac-2 S13

Figure SI-11. 1H-1H COSY spectra of rac-2 S14

Figure SI-12. GC-EI/MS of rac-2 S15

Figure SI-13. 1H NMR spectra of rac-4 S16

Figure SI-14. 13C NMR spectra of rac-4 S17

Figure SI-15. 1H-1H COSY spectra of rac-4 S18

Figure SI-16. GC-EI/MS of rac-4 S19

Figure SI-17. 1H NMR spectra of (S)-1 S20

Figure SI-18. 13C NMR spectra of (S)-1 S21

Figure SI-19. GC-EI/MS of (S)-1 S22

Figure SI-20. 1H NMR spectra of (S)-2-MTPACP ester S23

Figure SI-21. 1H-1H COSY spectra of (S)-2-MTPACP ester S24
Figure SI-22. 1H NMR spectra of (S)-2-MTPACP ester for % enantiomeric excess

Figure SI-23. 19F NMR of (S)-2-MTPACP ester for % enantiomeric excess

Figure SI-24. 1H NMR of (S)-3

Figure SI-25. 13C NMR of (S)-3

Figure SI-26. GC-EI/MS of (S)-3

Figure SI-27. 1H NMR spectra of (R, R)-DACH Phenyl Trost ligand

Figure SI-28. 13C NMR spectra of (R, R)-DACH Phenyl Trost ligand

Figure SI-29. 31P NMR spectra of (R, R)-DACH Phenyl Trost ligand

Figure SI-30. 1H NMR spectra of Poly[(S)-3]

Figure SI-31. 13C NMR spectra of Poly[(S)-3]

Figure SI-32. 1H-1H COSY spectra of Poly[(S)-3]

Figure SI-33. 1H-NMR of Poly(S)-3 determination %HT and % trans.

Figure SI-34. SEC RI trace of Poly(S)-3.

Figure SI-35. 1H NMR of spectra of Poly(rac-3)

Figure SI-36. 13C NMR of spectra of Poly(rac-3)

Figure SI-37. 1H-1H COSY of spectra of Poly(rac-3)

Figure SI-38. 1H-NMR of Poly(rac-3) determination %HT and % trans.

Figure SI-39. SEC RI trace of Poly(rac-3).

Figure SI-40. 1H NMR spectra of Poly(rac-2)

Figure SI-41. 13C NMR spectra of Poly(rac-2)

Figure SI-42. 1H-1H COSY spectra of Poly(rac-2)

Figure SI-43. 1H-NMR of Poly(rac-2) determination %HT and % trans.

Figure SI-44. SEC RI trace of Poly(rac-2).

Figure SI-45. 1H NMR spectra of Poly(rac-1)

Figure SI-46. 13C NMR spectra of Poly(rac-1)

Figure SI-47. 1H-1H COSY spectra of Poly(rac-1)

Figure SI-48. 1H-NMR of Poly(rac-2) determination %HT and % trans.

Table SI-49. Equilibrium conversion of Poly(rac-3)

Figure SI-50. Conversion vs. time of Poly(rac-3)

Figure SI-51. TGA curve of Poly(rac-1), poly(rac-2), and poly(rac-3)

Figure SI-52. DSC overlay of all polymer samples
Mosher acid synthesis for the determination of % enantiomeric excess:

To a flame dried 4mL vial equipped with a stir bar, 7.1 mg (84.4 µmol, 1 eq.) of (S)-1 and 1.00 mL of DCM that was previously run through a plug of silica gel were added. To a separate dry vial, 0.0613 g (261.6 µmol, 3.1 eq.) of (R)-(+)−α-methoxy-α-trifluoromethylphenylacetic was added and dissolved in 0.32 mL of DCM. This solution was then added to (S)-1. To the solution, 0.0545g (261.4 µmol, 3.1 eq.) of DCC and 0.0323g (261.4 µmol, 3.1 eq.) of DMAP were added and capped. The mixture was allowed to stir for 3 hours. At this time, the mixture was run through a cotton plug and concentrated. The mixture was purified with a pipet column in 4:1 hexanes:EtoAc. The product was then concentrated and placed on the high-vacuum for 30 minutes. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.51 (m, 2H), 7.40 (m, 3H), 6.15 (ddd, J = 5.7, 2.6, 1.6 Hz, 1H), 5.92 (m, 1H), 5.86 (m, 1H), 3.55 (s, 1H), 2.50 (dtdd, J = 15.8, 8.9, 4.2, 2.4 Hz, 1H), 2.37 (m, 2H), 1.95 (m, 1H)

(R, R)-DACH Phenyl Trost ligand:

The Trost ligand was synthesized following previous literature with the following modifications. The brown solid was purified with 97.5:2.5 DCM:MeOH via column chromatography and recrystallized twice from MeCN to yield a white solid. ¹H NMR (600 MHz, CDCl₃) δ (ppm): 7.60 – 7.55 (m, 2H), 7.35 – 7.17 (m, 24H), 6.94 – 6.88 (m, 2H), 6.32 (d, J = 6.9 Hz, 2H), 3.82 – 3.73 (m, 2H), 1.90 – 1.82 (m, 2H), 1.69 – 1.61 (m, 2H), 1.28 – 1.15 (m, 2H), 0.98 (td, J = 15.1, 13.8, 6.2 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm): 169.29, 140.88, 140.72, 137.84, 137.76, 137.70, 136.73, 136.58, 134.27, 133.95, 133.82, 130.16, 128.75, 128.60, 128.54, 128.51, 128.49, 128.45, 128.40, 53.89, 32.00, 24.66. ³¹P NMR (243 MHz, CDCl₃) δ -9.78.
Figure S1. 1H-NMR spectrum of rac-1, (in $^*\text{CDCl}_3$ 400 MHz)
Figure S2. 13C-NMR spectrum of rac-1, (in *CDCl$_3$ 150 MHz)
Figure S3. 1H-1H COSY spectrum of rac-1, (in CDCl$_3$ 600 MHz)
Figure S4. The mass spectrum at RT 4.08-4.12 min for rac-1. The molecular peak is observed at \(m/z \) 84.07.
Figure S5. 1H-NMR spectrum of rac-3, (in *CDCl$_3$ 500 MHz).
Figure S6. 13C-NMR spectrum of rac-3, (in $^\text{CDCl}_3$ 150 MHz)
Figure S7. 1H-1H COSY spectrum of rac-3, (in CDCl$_3$ 500 MHz).
Figure S8: The mass spectrum at RT 8.27-8.32 min for the sample rac-3 The molecular peak is observed at m/z 198.15.
Figure S9. 1H-NMR spectrum of rac-2, (in *CDCl$_3$ 400 MHz)
Figure S10. 13C-NMR spectrum of rac-2, (in *CDCl$_3$ 150 MHz)
Figure S11. 1H-1H COSY spectrum of rac-2, (in CDCl$_3$ 600 MHz)
Figure S12. The mass spectrum at RT 5.60-5.65 min for the sample *rac*-2. The molecular peak is observed at *m/z* 156.10.
Figure S13. 1H-NMR spectrum of rac-4, (in *CDCl$_3$ 400 MHz)
Figure S14. 13C-NMR spectrum of rac-4, (in *CDCl$_3$, 150 MHz)
Figure S15. 1H-1H COSY spectrum of rac-4, (in CDCl$_3$ 600 MHz)
Figure S16: The mass spectrum at RT 5.74-5.81 min of rac-4. The molecular peak is observed at m/z 126.04.
Figure S 17. 1H-NMR spectrum of (S)-1 (in *CDCl$_3$, 400 MHz)
Figure S 18. 13C NMR spectrum of (S)-1 (in CDCl$_3$, 150 MHz)
Figure S19: The mass spectrum at RT 4.08-4.12 min for (S)-1. The molecular peak is observed at \(m/z \) 84.06.
Figure S 20. 1H-NMR spectrum of (S)-2-MTPACP ester (in $^*\text{CDCl}_3$, 400 MHz).
Figure S21. 1H-1H COSY spectrum of (S)-2-MTPACP ester, (in CDCl$_3$, 400 MHz.).
Figure S 22. 1H-NMR of (S)-2-MTPACP ester (in CDCl$_3$, 400 MHz.).

\[
\% \text{ee} = \frac{\text{area major}}{(\text{area major} + \text{area min})} \times 100 = 90.1 \% \text{ ee}
\]
Figure S 23. 19F NMR spectrum of (S)-2-MTPACP ester (in CDCl$_3$, 376.5 MHz.). Deconvolution of the peaks were used to determine the integration of the two peaks.

$$\% \text{ ee} = \frac{\text{area major}}{(\text{area major} + \text{area minor})} \times 100 = 90.4 \% \text{ ee}$$
Figure S 24. 1H NMR spectrum of (S)-3 (in *CDCl$_3$, 400 MHz).
Figure S 25. 13C NMR of (S)-3 (in CDCl3, 100 MHz)
Figure S 26: The mass spectrum at RT 8.27-8.34 min of (S)-3. The molecular peak is observed at m/z 198.16.
Figure S 27. 1H NMR spectrum of Trost ligand (in *CDCl$_3$, 600 MHz) # DCM
Figure S 28. 13C NMR spectra of the TROST Ligand (in CDCl$_3$, 150 MHz)
Figure S 29. 31P NMR spectrum of Trost ligand (in CDCl$_3$, 243 MHz)
Figure S 30. 1H NMR spectrum of Poly[(S)-3], (in *CDCl$_3$, 400 MHz)
Figure S 31. 13C NMR spectrum of Poly[(S)-3], (in *CDCl$_3$, 150 MHz)
Figure S 32. 1H-1H COSY spectrum of Poly[(S)-3] (CDCl$_3$, 150 MHz)
Figure S 33. 1H-NMR spectrum of Poly[(S)-3] (CDCl$_3$, 400 MHz). Deconvolution of the peaks were used to determine the %HT and % trans of the polymer.

\[
\text{% HT} = \frac{\text{area of cis} - \text{HT} + \text{trans} - \text{HT}}{\text{total area cis} - \text{HT} + \text{trans} - \text{HH} + \text{trans} - \text{HT}} \times 100 = 91.4 \%
\]

\[
\text{% trans} = \frac{\text{area of trans} - \text{HH} + \text{trans} - \text{HT}}{\text{total area cis} - \text{HT} + \text{trans} - \text{HH} + \text{trans} - \text{HT}} \times 100 = 95.6 \%
\]
Figure S 34. SEC RI trace of Poly(S)-3. (Đ – 2.81, Mn – 30.2 kDa)
Figure S 35. 1H NMR of spectrum of Poly(rac-3), (in *CDCl$_3$, 500 MHz)
Figure S 36. 13C NMR of spectrum of Poly(rac-3), (in *CDCl$_3$, 150 MHz)
Figure 37. 1H-1H COSY of spectrum of Poly(rac-3), (in CDCl$_3$, 500 MHz)
Figure S 38. 1H-NMR spectrum of Poly(rac-3) (CDCl$_3$, 400 MHz). Deconvolution of the peaks were used to determine the %HT and % trans of the polymer.

\[
\%HT = \frac{\text{area of cis} - \text{HT} + \text{trans} - \text{HT}}{\text{total area cis} - \text{HT} + \text{trans} - \text{HH} + \text{trans} - \text{HT}} \times 100 = 92.1 \%.
\]

\[
\%\text{trans} = \frac{\text{area of trans} - \text{HH} + \text{trans} - \text{HT}}{\text{total area cis} - \text{HT} + \text{trans} - \text{HH} + \text{trans} - \text{HT}} \times 100 = 95.6 \%.
\]
Figure S 39. SEC RI trace of Poly(rac-3). (Đ – 2.56, Mn – 22.3 kDa)
Figure S 40. 1H NMR spectrum of Poly(rac-2), (in *CDCl$_3$, 500 MHz)
Figure S 41. 13C NMR spectrum of Poly(rac-2), (in *CDCl$_3$, 150 MHz)

Figure S 42. 1H-1H COSY spectrum of Poly(rac-2), (in CDCl$_3$, 500 MHz)
Figure S 43. 1H-NMR spectrum of Poly(rac-2) (CDCl$_3$, 400 MHz). Deconvolution of the peaks were used to determine the %HT and % trans of the polymer.

\[
\text{% HT} = \frac{\text{area of cis - HT + trans - HT}}{\text{total area cis - HT + trans - HH + trans - HT}} \times 100 = 68.3 \%.
\]

\[
\text{% trans} = \frac{\text{area of trans - HH + trans - HT}}{\text{total area cis - HT + trans - HH + trans - HT}} \times 100 = 94.2 \%.
\]
Figure S 44. SEC RI trace of Poly(rac-2). ($\bar{D} = 2.07$, $\text{Mn} = 41.6$ kDa)
Figure S 45. 1H NMR spectrum of Poly(rac-1), (*DMF-d_7, 600 MHz)
Figure S 46. 13C NMR spectrum of Poly(rac-1), (*DMF$_7$, 150 MHz)
Figure S 47. 1H-1H COSY spectra of Poly(rac-1) (CDCl$_3$, 600 MHz)
Figure S 48. 1H-NMR spectrum of Poly(rac-1) (CDCl$_3$, 400 MHz). Deconvolution of the peaks were used to determine the %HT and % trans of the polymer.

$$\% HT = \frac{\text{area of cis} - \text{HT} + \text{trans} - \text{HT}}{\text{total area cis} - \text{HT} + \text{trans} - \text{HH} + \text{trans} - \text{HT}} \times 100 = 57 \%.$$

$$\% \text{trans} = \frac{\text{area of trans} - \text{HH} + \text{trans} - \text{HT}}{\text{total area cis} - \text{HT} + \text{trans} - \text{HH} + \text{trans} - \text{HT}} \times 100 = 91 \%.$$
Table S49: Aliquot characterization of Poly(rac-3) at 2.5 M with HG2 at -10 °C.

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Conv(^a) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.5</td>
<td>4.8</td>
</tr>
<tr>
<td>52.33</td>
<td>14.5</td>
</tr>
<tr>
<td>90</td>
<td>33.1</td>
</tr>
<tr>
<td>116</td>
<td>33.3</td>
</tr>
<tr>
<td>157</td>
<td>33.3</td>
</tr>
</tbody>
</table>

\(^a\) Determined by \(^1\)H NMR (400 MHz in CDCl\(_3\)).
Figure S50. Equilibrium conversion of Poly(rac-3) with respect to time.
Figure S51. TGA analysis of poly(rac-1), poly(rac-2) and poly(rac-3) after equilibration at 110 °C followed by heating at 10 °C min⁻¹ to 750 °C under argon.
Figure S52. Differential scanning calorimetry thermograms of each polymer sample. The thermal range chosen was based on the minimum temperature for the instrument (-70 °C) and the temperature at which thermal decomposition of the polymer is suspected (~200 °C) based on TGA. Jagged baseline noise is present above 100 °C on some samples and was determined to be an artifact of the instrument by repeated cycles where this noise was found inconsistent.

References: